Guest User

Untitled

a guest
Oct 31st, 2017
130
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 4.29 KB | None | 0 0
  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. try:
  4. from scipy import misc
  5. except ImportError:
  6. !pip install scipy
  7. from scipy import misc
  8.  
  9. ############################################ train
  10.  
  11. training_size = 300
  12. img_size = 20*20*3
  13. training_data = np.empty(shape=(training_size,20,20,3))
  14.  
  15. import glob
  16. i = 0
  17. for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
  18. image = misc.imread(filename)
  19. training_data[i] = image
  20. i+=1
  21.  
  22.  
  23. print(training_data[0].shape)
  24.  
  25. a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  26. 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  27. 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
  28. from sklearn.preprocessing import OneHotEncoder
  29. a = np.asarray(a)
  30. b = OneHotEncoder(sparse=False).fit_transform(a.reshape(-1, 1))
  31. #b = tf.one_hot(a,3)
  32. #sess = tf.Session()
  33. #sess.run(b)
  34. ############################################
  35.  
  36. #training_labels = tf.one_hot(a,3)
  37. #sess = tf.Session()
  38. #sess.run(training_labels)
  39.  
  40.  
  41. #################################################### test
  42. test_size = 300
  43. img_size = 20*20*3
  44. #class Struct:
  45.  
  46. #test_images=[];
  47. #test_labels=[];
  48. #test_data= Struct(training_set=test_images, labels=test_labels)
  49.  
  50. test_images = np.empty(shape=(test_size,20,20,3))
  51. import glob
  52. i = 0
  53. for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
  54. image = misc.imread(filename)
  55. test_images[i] = image
  56. i+=1
  57. print(test_images[0].shape)
  58. c= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  59. 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  60. 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
  61. test_labels = tf.one_hot(c,3)
  62. sess = tf.Session()
  63. sess.run(test_labels)
  64.  
  65.  
  66. import tensorflow as tf
  67. tf.reset_default_graph()
  68. from __future__ import division, print_function, absolute_import
  69.  
  70. import tflearn
  71. from tflearn.layers.core import input_data, dropout, fully_connected
  72. from tflearn.layers.conv import conv_2d, max_pool_2d
  73. from tflearn.layers.normalization import local_response_normalization
  74. from tflearn.layers.estimator import regression
  75.  
  76.  
  77. network = input_data(shape=[None, 20, 20, 3])
  78. network = conv_2d(network, 96, 11, strides=4, activation='relu')
  79. network = max_pool_2d(network, 3, strides=2)
  80. network = local_response_normalization(network)
  81. network = conv_2d(network, 256, 5, activation='relu')
  82. network = max_pool_2d(network, 3, strides=2)
  83. network = local_response_normalization(network)
  84. network = conv_2d(network, 384, 3, activation='relu')
  85. network = conv_2d(network, 384, 3, activation='relu')
  86. network = conv_2d(network, 256, 3, activation='relu')
  87. network = max_pool_2d(network, 3, strides=2)
  88. network = local_response_normalization(network)
  89. network = fully_connected(network, 4096, activation='tanh')
  90. network = dropout(network, 0.5)
  91. network = fully_connected(network, 4096, activation='tanh')
  92. network = dropout(network, 0.5)
  93. network = fully_connected(network, 3, activation='softmax')
  94. network = regression(network, optimizer='momentum',
  95. loss='categorical_crossentropy',
  96. learning_rate=0.001)
  97.  
  98. model = tflearn.DNN(network, checkpoint_path='model_alexnet',
  99. max_checkpoints=1, tensorboard_verbose=2)
  100.  
  101. model.fit(training_data, b, n_epoch=1000, validation_set=(test_images, test_labels),
  102. shuffle=True, show_metric=True, batch_size=64, snapshot_step=200,
  103. snapshot_epoch=False, run_id='alexnet_test')
Advertisement
Add Comment
Please, Sign In to add comment