Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- No — the conjecture is false. The first counterexample occurs at n = 97.
- Let
- L = lcm(1,2,...,97) = 2^6 · 3^4 · 5^2 · 7^2 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 89 · 97.
- Now define
- M = L · (2^2 · 3 · 5 · 11 · 13)/(89 · 97) = 2^8 · 3^5 · 5^3 · 7^2 · 11^2 · 13^2 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79 · 83.
- Then:
- M < L because M/L = 8580/8633 < 1.
- But σ(M) > σ(L). Indeed, using multiplicativity and σ(p^e) = (p^{e+1} − 1)/(p − 1), σ(M)/σ(L) equals ( (2^9−1)/(2^7−1) ) · ( (3^6−1)/(3^5−1) ) · ( (5^4−1)/(5^3−1) ) · ( (11^3−1)/(11^2−1) ) · ( (13^3−1)/(13^2−1) ) · 1/[(1+89)(1+97)] = 14298583/14291310 > 1.
- Thus L = lcm(1,…,97) is not highly abundant. A computation confirms all L_n are highly abundant for n ≤ 96, so n = 97 is the smallest counterexample.
Advertisement
Add Comment
Please, Sign In to add comment