Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- **Question 1**
- (a) For \( x = 1 \): \( z = 1 + 2y \). Sketch a straight line with slope 2 in the \( y \)-\( z \) plane.
- (b) For \( y = 1 \): \( z = x^2 + 2x \). Sketch a parabola opening upwards with vertex at \( x = -1 \).
- **Question 2**
- (a) Surface area formula:
- \[
- A = 2\pi \int_0^1 \sqrt{1 + 2x^2} \, dx \implies k = 2
- \]
- (b) Tolerance analysis: Engineering process (\( \pm 0.5\% \)) is within required (\( \pm 1\% \)). All components are suitable.
- **Question 3**
- (a) Cross product equations yield \( p = 7 \), \( q = 4 \).
- (b)(i) Volume condition: \( | -11f + 6e + 2d | = 42 \).
- (ii) Geometrically, two parallel planes where \( C \) must lie.
- **Question 4**
- Using Gamma function properties and recurrence, \( A_n = \frac{n+1}{n+2} \), which increases and converges to 1.
- **Question 5**
- (a)(i) Cayley table shows cyclic group \( C_4 \).
- (ii) \( G \cong C_4 \) due to element of order 4.
- (b)(i) Odd quadratic residues modulo 32: \{1, 9, 17, 25\}.
- (ii) For odd \( n \), \( n^6 + 3n^4 + 7n^2 \equiv 11 \mod 32 \).
- **Question 6**
- (a) Hessian determinant:
- \[
- -\frac{2y \sin y}{x^2} - \left( \cos y - \frac{1}{x^2} \right)^2
- \]
- (b) Determinant negative at \( P \implies \) saddle point.
- (c) From stationary conditions: \( \beta + \tan \beta = 0 \).
- **Question 7**
- (a) \( \alpha + \beta = 1 \), \( \alpha \beta = -1 \).
- (b)(i) \( S_2 = 3 \), \( S_3 = 4 \).
- (ii) Recurrence relation from \( \alpha, \beta \) roots.
- (iii) Integers by induction.
- (c)(i) \( \beta^n \) term necessary for integer \( S_n \).
- (ii) Modified formula: \( T_n = \alpha^n + (-1)^n / \alpha^n \).
- **Question 8**
- (a)(i) \( f(n) = (n^2 + 1)(2n + 1) \).
- (ii) Composite as product of two integers >1.
- (b)(i) \( \gcd(n^2 + 1, 2n + 1) \) divides 5.
- (ii) \( n = 7 \) yields \( \gcd(50, 15) = 5 \).
- **Question 9**
- (a) Identity element: \( 0 \).
- (b) Inverse of \( x \) is \( -x \).
- (c) Associativity via hyperbolic tangent addition.
- (d) Not closed (denominator zero for some \( a, b \)).
- (e) Subgroup \( D = \{0, i\sqrt{3}, -i\sqrt{3}\} \).
- ---
- **Final Answers**
- 1. Sketches provided.
- 2. (a) \( \boxed{k = 2} \); (b) Yes.
- 3. (a) \( p = \boxed{7} \), \( q = \boxed{4} \); (b)(i) \( -11f + 6e + 2d = \pm 42 \).
- 4. Limit \( \boxed{1} \).
- 5. (a)(ii) \( \boxed{C_4} \); (b)(i) \( \boxed{\{1, 9, 17, 25\}} \).
- 6. (b) Saddle point; (c) \( \beta + \tan \beta = 0 \).
- 7. (a) \( \boxed{1} \), \( \boxed{-1} \); (b)(i) \( \boxed{3} \), \( \boxed{4} \).
- 8. (a)(i) \( (n^2 + 1)(2n + 1) \); (b)(ii) \( \boxed{7} \).
- 9. (a) \( \boxed{0} \); (e) \( \boxed{\{0, i\sqrt{3}, -i\sqrt{3}\}} \).
Advertisement
Add Comment
Please, Sign In to add comment