Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- pd.read_fwf(path, colspecs=markers, names=columns,
- converters=create_convert_dict(columns))
- def create_convert_dict(columns):
- convert_dict = {}
- for col in columns:
- convert_dict[col] = null_convert
- return convert_dict
- def null_convert(value):
- value = value.strip()
- if value == "":
- return None
- else:
- return value
- pd.read_fwf(path, colspecs=markers, names=columns, na_values='',
- converters=create_convert_dict(columns))
- def create_convert_dict(columns):
- convert_dict = {}
- for col in columns:
- convert_dict[col] = col_strip
- return convert_dict
- def col_strip(value):
- return value.strip()
- In [57]: data = """
- A B C
- 0 foo
- 3 bar 2.0
- 1 3.0
- """
- In [58]: df = pandas.read_fwf(StringIO(data), widths=[5, 5, 5])
- In [59]: df
- Out[59]:
- A B C
- 0 0 foo NaN
- 1 3 bar 2
- 2 1 NaN 3
- In [60]: df.dtypes
- Out[60]:
- A int64
- B object
- C float64
Advertisement
Add Comment
Please, Sign In to add comment