MatsGranvik

Log operator Euler products

Apr 22nd, 2019
274
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.43 KB | None | 0 0
  1. (*program start*)Clear[nn, logarithm, LOGPRODUCT, LOGOPERATOR, n, k]
  2. nn = 90; logarithm = 1; LOGPRODUCT =
  3. Table[Table[
  4. If[n/k == logarithm, n/k, If[n == k, 1, 0]], {k, 1, nn}], {n, 1,
  5. nn}]; Monitor[Do[logarithm = If[PrimeQ[i] == True, i, 0];
  6. LOGOPERATOR =
  7. Table[Table[
  8. If[n/k == logarithm, -n/k, If[n == k, 1, 0]], {k, 1, nn}], {n, 1,
  9. nn}]; LOGPRODUCT = LOGPRODUCT.Inverse[LOGOPERATOR];, {i, 2,
  10. nn}], i]; LOGPRODUCT[[All, 1]]
  11. (*program end*)
  12.  
  13.  
  14. (*program start*)Clear[nn, logarithm, LOGPRODUCT, LOGi, n, k]
  15. nn = 90; logarithm = 1; LOGPRODUCT =
  16. Table[Table[
  17. If[n/k == logarithm, n/k, If[n == k, 1, 0]], {k, 1, nn}], {n, 1,
  18. nn}]; Monitor[Do[logarithm = If[PrimeQ[i] == True, i, 0];
  19. LOGi = Table[
  20. Table[If[n/k == logarithm, -n/k, If[n == k, 1, 0]], {k, 1,
  21. nn}], {n, 1, nn}];
  22. LOGPRODUCT = LOGPRODUCT.LOGi;, {i, 2, nn}], i]; LOGPRODUCT[[All, 1]]
  23. (*program end*)
  24.  
  25.  
  26.  
  27. (*program start*)Clear[nn, logarithm, LOGPRODUCT, LOGOPERATOR, n, k]
  28. nn = 90;
  29. logarithm = 1; LOGPRODUCT =
  30. Table[Table[
  31. If[n/k == logarithm, n/k, If[n == k, 1, 0]], {k, 1, nn}], {n, 1,
  32. nn}];
  33. Monitor[Do[logarithm = If[PrimeQ[i] == True, i, 0];
  34. LOGOPERATOR =
  35. Table[Table[
  36. If[n/k == logarithm, -n/k, If[n == k, 1, 0]], {k, 1, nn}], {n, 1,
  37. nn}];
  38. LOGPRODUCT =
  39. LOGPRODUCT.Inverse[LOGOPERATOR].Inverse[LOGOPERATOR];, {i, 2,
  40. nn}], i]; LOGPRODUCT[[All, 1]]/Range[nn]
  41. (*program end*)
Advertisement
Add Comment
Please, Sign In to add comment