Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- <?xml version="1.0" encoding="UTF-8"?>
- <!--
- CRT shader with phosphorLUT
- Copyright (C) 2010-2012 cgwg, Themaister and DOLLS (phosphorLUT modification by hunterk)
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 2 of the License, or (at your option)
- any later version.
- -->
- <shader language="GLSL">
- <texture id="phosphorLUT" file="240phoriz.png" filter="linear"/>
- <vertex><![CDATA[
- varying float CRTgamma;
- varying float monitorgamma;
- varying vec2 overscan;
- varying vec2 aspect;
- varying float d;
- varying float R;
- varying float cornersize;
- varying float cornersmooth;
- varying vec3 stretch;
- varying vec2 sinangle;
- varying vec2 cosangle;
- uniform vec2 rubyInputSize;
- uniform vec2 rubyTextureSize;
- uniform vec2 rubyOutputSize;
- varying vec2 texCoord;
- varying vec2 one;
- varying float mod_factor;
- #define FIX(c) max(abs(c), 1e-5);
- float intersect(vec2 xy)
- {
- float A = dot(xy,xy)+d*d;
- float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
- float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
- return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
- }
- vec2 bkwtrans(vec2 xy)
- {
- float c = intersect(xy);
- vec2 point = vec2(c)*xy;
- point -= vec2(-R)*sinangle;
- point /= vec2(R);
- vec2 tang = sinangle/cosangle;
- vec2 poc = point/cosangle;
- float A = dot(tang,tang)+1.0;
- float B = -2.0*dot(poc,tang);
- float C = dot(poc,poc)-1.0;
- float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
- vec2 uv = (point-a*sinangle)/cosangle;
- float r = R*acos(a);
- return uv*r/sin(r/R);
- }
- vec2 fwtrans(vec2 uv)
- {
- float r = FIX(sqrt(dot(uv,uv)));
- uv *= sin(r/R)/r;
- float x = 1.0-cos(r/R);
- float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
- return d*(uv*cosangle-x*sinangle)/D;
- }
- vec3 maxscale()
- {
- vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
- vec2 a = vec2(0.5,0.5)*aspect;
- vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x,
- fwtrans(vec2(c.x,-a.y)).y)/aspect;
- vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x,
- fwtrans(vec2(c.x,+a.y)).y)/aspect;
- return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
- }
- void main()
- {
- // START of parameters
- // gamma of simulated CRT
- CRTgamma = 2.4;
- // gamma of display monitor (typically 2.2 is correct)
- monitorgamma = 2.2;
- // overscan (e.g. 1.02 for 2% overscan)
- overscan = vec2(1.00,1.00);
- // aspect ratio
- aspect = vec2(1.0, 0.75);
- // lengths are measured in units of (approximately) the width of the monitor
- // simulated distance from viewer to monitor
- d = 2.0;
- // radius of curvature
- R = 1.5;
- // tilt angle in radians
- // (behavior might be a bit wrong if both components are nonzero)
- const vec2 angle = vec2(0.0,-0.15);
- // size of curved corners
- cornersize = 0.001;
- // border smoothness parameter
- // decrease if borders are too aliased
- cornersmooth = 1000.0;
- // END of parameters
- // Do the standard vertex processing.
- gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
- // Precalculate a bunch of useful values we'll need in the fragment
- // shader.
- sinangle = sin(angle);
- cosangle = cos(angle);
- stretch = maxscale();
- // Texture coords.
- texCoord = gl_MultiTexCoord0.xy;
- // Find the LUT coordinates
- gl_TexCoord[1].xy = gl_MultiTexCoord1.xy;
- // The size of one texel, in texture-coordinates.
- one = 1.0 / rubyTextureSize;
- // Resulting X pixel-coordinate of the pixel we're drawing.
- mod_factor = texCoord.x * rubyTextureSize.x * rubyOutputSize.x / rubyInputSize.x;
- }
- ]]></vertex>
- <fragment outscale="2.0"><![CDATA[
- // Comment the next line to disable interpolation in linear gamma (and gain speed).
- //#define LINEAR_PROCESSING
- // Enable screen curvature.
- //#define CURVATURE
- // Enable 3x oversampling of the beam profile
- #define OVERSAMPLE
- // Use the older, purely gaussian beam profile
- //#define USEGAUSSIAN
- // Macros.
- #define FIX(c) max(abs(c), 1e-5);
- #define PI 3.141592653589
- #ifdef LINEAR_PROCESSING
- # define TEX2D(c) pow(texture2D(rubyTexture, (c)), vec4(CRTgamma))
- #else
- # define TEX2D(c) texture2D(rubyTexture, (c))
- #endif
- uniform sampler2D rubyTexture;
- uniform vec2 rubyInputSize;
- uniform vec2 rubyTextureSize;
- uniform float brightness;
- // Identify LUT texture
- uniform sampler2D phosphorLUT;
- varying vec2 texCoord;
- varying vec2 one;
- varying float mod_factor;
- varying float CRTgamma;
- varying float monitorgamma;
- varying vec2 overscan;
- varying vec2 aspect;
- varying float d;
- varying float R;
- varying float cornersize;
- varying float cornersmooth;
- varying vec3 stretch;
- varying vec2 sinangle;
- varying vec2 cosangle;
- float intersect(vec2 xy)
- {
- float A = dot(xy,xy)+d*d;
- float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
- float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
- return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
- }
- vec2 bkwtrans(vec2 xy)
- {
- float c = intersect(xy);
- vec2 point = vec2(c)*xy;
- point -= vec2(-R)*sinangle;
- point /= vec2(R);
- vec2 tang = sinangle/cosangle;
- vec2 poc = point/cosangle;
- float A = dot(tang,tang)+1.0;
- float B = -2.0*dot(poc,tang);
- float C = dot(poc,poc)-1.0;
- float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
- vec2 uv = (point-a*sinangle)/cosangle;
- float r = FIX(R*acos(a));
- return uv*r/sin(r/R);
- }
- vec2 transform(vec2 coord)
- {
- coord *= rubyTextureSize / rubyInputSize;
- coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy;
- return (bkwtrans(coord)/overscan/aspect+vec2(0.5)) * rubyInputSize / rubyTextureSize;
- }
- float corner(vec2 coord)
- {
- coord *= rubyTextureSize / rubyInputSize;
- coord = (coord - vec2(0.5)) * overscan + vec2(0.5);
- coord = min(coord, vec2(1.0)-coord) * aspect;
- vec2 cdist = vec2(cornersize);
- coord = (cdist - min(coord,cdist));
- float dist = sqrt(dot(coord,coord));
- return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0);
- }
- // Calculate the influence of a scanline on the current pixel.
- //
- // 'distance' is the distance in texture coordinates from the current
- // pixel to the scanline in question.
- // 'color' is the colour of the scanline at the horizontal location of
- // the current pixel.
- vec4 scanlineWeights(float distance, vec4 color)
- {
- // "wid" controls the width of the scanline beam, for each RGB channel
- // The "weights" lines basically specify the formula that gives
- // you the profile of the beam, i.e. the intensity as
- // a function of distance from the vertical center of the
- // scanline. In this case, it is gaussian if width=2, and
- // becomes nongaussian for larger widths. Ideally this should
- // be normalized so that the integral across the beam is
- // independent of its width. That is, for a narrower beam
- // "weights" should have a higher peak at the center of the
- // scanline than for a wider beam.
- #ifdef USEGAUSSIAN
- vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
- vec4 weights = vec4(distance / wid);
- return 0.4 * exp(-weights * weights) / wid;
- #else
- vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
- vec4 weights = vec4(distance / 0.3);
- return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
- #endif
- }
- void main()
- {
- // Here's a helpful diagram to keep in mind while trying to
- // understand the code:
- //
- // | | | | |
- // -------------------------------
- // | | | | |
- // | 01 | 11 | 21 | 31 | <-- current scanline
- // | | @ | | |
- // -------------------------------
- // | | | | |
- // | 02 | 12 | 22 | 32 | <-- next scanline
- // | | | | |
- // -------------------------------
- // | | | | |
- //
- // Each character-cell represents a pixel on the output
- // surface, "@" represents the current pixel (always somewhere
- // in the bottom half of the current scan-line, or the top-half
- // of the next scanline). The grid of lines represents the
- // edges of the texels of the underlying texture.
- // Texture coordinates of the texel containing the active pixel.
- #ifdef CURVATURE
- vec2 xy = transform(texCoord);
- #else
- vec2 xy = texCoord;
- #endif
- float cval = corner(xy);
- // Of all the pixels that are mapped onto the texel we are
- // currently rendering, which pixel are we currently rendering?
- vec2 ratio_scale = xy * rubyTextureSize - vec2(0.5);
- #ifdef OVERSAMPLE
- float filter = fwidth(ratio_scale.y);
- #endif
- vec2 uv_ratio = fract(ratio_scale);
- // Snap to the center of the underlying texel.
- xy = (floor(ratio_scale) + vec2(0.5)) / rubyTextureSize;
- // Calculate Lanczos scaling coefficients describing the effect
- // of various neighbour texels in a scanline on the current
- // pixel.
- vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
- // Prevent division by zero.
- coeffs = FIX(coeffs);
- // Lanczos2 kernel.
- coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
- // Normalize.
- coeffs /= dot(coeffs, vec4(1.0));
- // Calculate the effective colour of the current and next
- // scanlines at the horizontal location of the current pixel,
- // using the Lanczos coefficients above.
- vec4 col = clamp(mat4(
- TEX2D(xy + vec2(-one.x, 0.0)),
- TEX2D(xy),
- TEX2D(xy + vec2(one.x, 0.0)),
- TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs,
- 0.0, 1.0);
- vec4 col2 = clamp(mat4(
- TEX2D(xy + vec2(-one.x, one.y)),
- TEX2D(xy + vec2(0.0, one.y)),
- TEX2D(xy + one),
- TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs,
- 0.0, 1.0);
- #ifndef LINEAR_PROCESSING
- col = pow(col , vec4(CRTgamma));
- col2 = pow(col2, vec4(CRTgamma));
- #endif
- // Calculate the influence of the current and next scanlines on
- // the current pixel.
- vec4 weights = scanlineWeights(uv_ratio.y, col);
- vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
- #ifdef OVERSAMPLE
- uv_ratio.y =uv_ratio.y+1.0/3.0*filter;
- weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0;
- weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
- uv_ratio.y =uv_ratio.y-2.0/3.0*filter;
- weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0;
- weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
- #endif
- vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);
- // Convert the image gamma for display on our output device.
- mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
- // Identify the LUT and screen textures
- float brightness = 1.6;
- vec4 inverse = 1 - (brightness * texture2D(rubyTexture, texCoord));
- vec4 screen = texture2D(phosphorLUT, gl_TexCoord[1].xy);
- vec4 final = screen - inverse;
- // Color the texel.
- gl_FragColor = screen - (1.0 - (brightness * vec4(mul_res, 1.0)));
- }
- ]]></fragment>
- </shader>
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement