Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- data = pd.read_csv('E:\\training.csv')
- array3 = data['Diabetes medicine years'].replace(np.Nan,-1)
- length = array3.shape[0]
- print(length)
- arr3 = [];
- for i in range(length):
- if array3[i] != -1:
- # print(i)
- arr3.append(array[i])
- print(arr3)
- trimmed = st.trim_mean(arr3,.05)
- mask=(data['Diabetes']=='Yes') & ((data['Diabetes medicine years'=='NA']) |(data['Diabetes medicine years'=='No']|(data['Diabetes medicine years'=='VALID']))
- data.loc[mask,'Diabetes medicine years']=pd.to_numeric(data['Diabetes medicine years'],errors='coerce').fillna(trimmed)
- data.to_csv(r'E:\\data.csv')
Advertisement
Add Comment
Please, Sign In to add comment