prothoma

Untitled

Dec 9th, 2017
89
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.63 KB | None | 0 0
  1. import pandas as pd
  2. data = pd.read_csv('E:\\training.csv')
  3. array3 = data['Diabetes medicine years'].replace(np.Nan,-1)
  4. length = array3.shape[0]
  5. print(length)
  6. arr3 = [];
  7. for i in range(length):
  8. if array3[i] != -1:
  9. # print(i)
  10. arr3.append(array[i])
  11.  
  12. print(arr3)
  13. trimmed = st.trim_mean(arr3,.05)
  14. mask=(data['Diabetes']=='Yes') & ((data['Diabetes medicine years'=='NA']) |(data['Diabetes medicine years'=='No']|(data['Diabetes medicine years'=='VALID']))
  15. data.loc[mask,'Diabetes medicine years']=pd.to_numeric(data['Diabetes medicine years'],errors='coerce').fillna(trimmed)
  16. data.to_csv(r'E:\\data.csv')
Advertisement
Add Comment
Please, Sign In to add comment