Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Mixing the classes and putting them in batches of classes...
- Creating a validation set ...
- Batch of classes number 1 arrives ...
- Batch of classes 1 out of 10 batches
- Epoch 0
- 0.287272
- 0.00871001
- 0.00892173
- 0.00863384
- 0.00751852
- 0.00657171
- 0.00608974
- 0.00585746
- Training accuracy 0.062500
- 0.0057788
- 0.00560296
- 0.00555174
- 0.00548918
- 0.0055367
- 0.00539182
- 0.00533972
- 0.00537566
- Training accuracy 0.070312
- 0.00534246
- 0.00530634
- 0.00524906
- 0.00524764
- 0.00522196
- 0.00521024
- 0.00523701
- 0.00517737
- Training accuracy 0.078125
- 0.005154
- 0.00515257
- 0.00507729
- 0.0051164
- 0.0050586
- 0.00501388
- 0.00512017
- 0.00504586
- Training accuracy 0.085938
- 0.00494739
- 0.00499304
- 0.00497555
- 0.00495446
- 0.00496844
- 0.00494343
- 0.00493757
- 0.00485029
- Training accuracy 0.140625
- 0.00482917
- 0.00483164
- 0.00488351
- 0.00479883
- 0.00483863
- 0.00484456
- 0.0048152
- 0.00476418
- Training accuracy 0.078125
- 0.00475501
- 0.00481238
- 0.00475885
- 0.00478915
- 0.00470401
- 0.00471081
- 0.00468985
- 0.00466995
- Training accuracy 0.132812
- 0.00463978
- 0.00475154
- 0.00460605
- 0.0046251
- 0.00460757
- 0.00460384
- 0.00455722
- 0.00461336
- Training accuracy 0.156250
- 0.00457644
- 0.00455298
- 0.00454285
- 0.0045895
- 0.00455414
- 0.00451121
- 0.00456292
- 0.0045069
- Training accuracy 0.187500
- 0.00452433
- 0.00448638
- 0.00447541
- 0.00442919
- 0.00447134
- 0.0044896
- 0.0044824
- 0.00450531
- Training accuracy 0.195312
- 0.00448563
- 0.00442603
- 0.00439628
- 0.00439986
- 0.00439687
- 0.00440562
- 0.00435975
- 0.00443868
- Training accuracy 0.187500
- 0.00435689
- 0.00437406
- 0.00437823
- 0.00437819
- 0.00429873
- 0.00438045
- 0.00433074
- 0.0043012
- Training accuracy 0.242188
- 0.00433212
- Exemplars selection starting ...
- Computing theoretical class means for NCM and mean-of-exemplars for iCaRL ...
- Batch of classes number 2 arrives ...
- Batch of classes 2 out of 10 batches
- Epoch 0
- 0.011735
- 0.0121078
- 0.0111618
- 0.010403
- 0.00974831
- 0.00949552
- 0.00924931
- 0.00905704
- Training accuracy 0.062500
- 0.00905689
- 0.00911064
- 0.00898644
- 0.00896149
- 0.00897088
- 0.00886607
- 0.00886964
- 0.00882033
- Training accuracy 0.046875
- 0.0088617
- 0.00889832
- 0.00885294
- 0.0086567
- 0.00872421
- 0.0087801
- 0.00876649
- 0.00870548
- Training accuracy 0.085938
- 0.00875134
- 0.00867434
- 0.00867335
- 0.00865952
- 0.0087811
- 0.00874177
- 0.00869078
- 0.00861675
- Training accuracy 0.101562
- 0.00877293
- 0.00871357
- 0.00860829
- 0.00870467
- 0.00875316
- 0.00861962
- 0.00868724
- 0.00861359
- Training accuracy 0.078125
- 0.00863145
- 0.00872596
- 0.0085802
- 0.00867081
- 0.00861635
- 0.00861645
- 0.00867638
- 0.00864936
- Training accuracy 0.132812
- 0.00862112
- 0.00855318
- 0.00865119
- 0.00867549
- 0.00866487
- 0.00859771
- 0.00850684
- 0.00858965
- Training accuracy 0.140625
- 0.00859381
- 0.00856225
- 0.00861783
- 0.00853969
- 0.00860939
- 0.00851869
- 0.00861566
- 0.00856602
- Training accuracy 0.078125
- 0.00856246
- 0.00847558
- 0.0086258
- 0.00857576
- 0.00860878
- 0.00861267
- 0.00855802
- 0.00849134
- Training accuracy 0.148438
- 0.00858278
- 0.00856503
- 0.00848093
- 0.00856737
- 0.00860464
- 0.0084817
- 0.0085678
- 0.00853012
- Training accuracy 0.078125
- 0.00852588
- 0.00850274
- 0.00844964
- 0.00855854
- 0.00853108
- 0.00853306
- 0.00862732
- 0.00848812
- Training accuracy 0.179688
- 0.00852059
- 0.00847373
- 0.00846274
- 0.00853646
- 0.00850241
- 0.00846972
- 0.00858296
- 0.00844549
- Training accuracy 0.203125
- 0.00850263
- 0.00846575
- 0.00849627
- 0.00847889
- 0.0084808
- 0.00847772
- 0.00846598
- 0.00856872
- Training accuracy 0.156250
- 0.00856192
- 0.00842343
- 0.00854151
- 0.00842551
- 0.00848143
- 0.00842469
- 0.00835394
- Exemplars selection starting ...
- Computing theoretical class means for NCM and mean-of-exemplars for iCaRL ...
- Batch of classes number 3 arrives ...
- Batch of classes 3 out of 10 batches
- Epoch 0
- 0.0133068
- 0.0160411
- 0.0152802
- 0.0145554
- 0.0138945
- 0.0134506
- 0.013309
- 0.0132363
- Training accuracy 0.054688
- 0.0131409
- 0.0129834
- 0.0129979
- 0.0130395
- 0.0129674
- 0.012992
- 0.0129019
- 0.012907
- Training accuracy 0.046875
- 0.0129227
- 0.0129192
- 0.0128864
- 0.0128227
- 0.0128627
- 0.0127671
- 0.0127762
- 0.012841
- Training accuracy 0.085938
- 0.0127621
- 0.0127453
- 0.0127394
- 0.0127804
- 0.0127349
- 0.0127909
- 0.0126875
- 0.012652
- Training accuracy 0.125000
- 0.0127161
- 0.0127041
- 0.0126931
- 0.0127085
- 0.0126899
- 0.0126107
- 0.0127092
- 0.0126483
- Training accuracy 0.093750
- 0.0127544
- 0.0126553
- 0.0127003
- 0.0125799
- 0.0126261
- 0.0125648
- 0.0126154
- 0.0126282
- Training accuracy 0.132812
- 0.0126254
- 0.0127322
- 0.0126617
- 0.0126598
- 0.0125445
- 0.0126811
- 0.0125878
- 0.0126139
- Training accuracy 0.132812
- 0.0126788
- 0.0126547
- 0.0126342
- 0.0125765
- 0.0125175
- 0.0125667
- 0.0124526
- 0.0125487
- Training accuracy 0.195312
- 0.0125424
- 0.0126633
- 0.0125563
- 0.0125391
- 0.0126417
- 0.0125652
- 0.0125713
- 0.0125582
- Training accuracy 0.140625
- 0.0125737
- 0.012591
- 0.0125367
- 0.0125514
- 0.0125518
- 0.012547
- 0.0125682
- 0.0125115
- Training accuracy 0.179688
- 0.0125117
- 0.0126273
- 0.0126121
- 0.0125133
- 0.0125625
- 0.0125111
- 0.0124418
- 0.0125072
- Training accuracy 0.140625
- 0.0124712
- 0.0125143
- 0.0125299
- 0.0124889
- 0.0125016
- 0.0126104
- 0.0125008
- 0.0125031
- Training accuracy 0.140625
- 0.0124458
- 0.0124321
- 0.0125703
- 0.0124474
- 0.0125129
- 0.0124093
- 0.0125206
- 0.0124371
- Training accuracy 0.156250
- 0.0123995
- 0.012514
- 0.0124937
- 0.0124761
- 0.0124713
- 0.0124752
- 0.0125337
- 0.0125326
- Training accuracy 0.226562
- Exemplars selection starting ...
- Computing theoretical class means for NCM and mean-of-exemplars for iCaRL ...
- Batch of classes number 4 arrives ...
- Batch of classes 4 out of 10 batches
- Epoch 0
- 0.0150059
- 0.0206414
- 0.0200337
- 0.0192729
- 0.0186985
- 0.0182909
- 0.017981
- 0.0178339
- Training accuracy 0.015625
- 0.0176549
- 0.017499
- 0.0173934
- 0.0175482
- 0.017556
- 0.01739
- 0.0173688
- 0.0174655
- Training accuracy 0.015625
- 0.0174182
- 0.0174006
- 0.0173555
- 0.0173084
- 0.0172947
- 0.0173323
- 0.0173499
- 0.0172396
- Training accuracy 0.015625
- 0.017452
- 0.0173198
- 0.0172841
- 0.0172596
- 0.0172748
- 0.0173
- 0.0172711
- 0.0173558
- Training accuracy 0.062500
- 0.0172768
- 0.0172309
- 0.0172989
- 0.0173261
- 0.0172818
- 0.0172231
- 0.0172613
- 0.0173507
- Training accuracy 0.117188
- 0.017095
- 0.0172337
- 0.0172449
- 0.0171851
- 0.0171699
- 0.0172261
- 0.0171296
- 0.0171692
- Training accuracy 0.132812
- 0.0172217
- 0.0172001
- 0.0172492
- 0.0171694
- 0.0170979
- 0.0172475
- 0.01708
- 0.0172318
- Training accuracy 0.062500
- 0.0171684
- 0.0170606
- 0.0171323
- 0.017094
- 0.0170702
- 0.0171387
- 0.0171015
- 0.0172059
- Training accuracy 0.117188
- 0.0170693
- 0.0171517
- 0.0172013
- 0.0172022
- 0.0172451
- 0.0171009
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement