Advertisement
Guest User

asd

a guest
Aug 20th, 2017
94
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.95 KB | None | 0 0
  1. %% Machine Learning Online Class - Exercise 1: Linear Regression
  2.  
  3. % Instructions
  4. % ------------
  5. %
  6. % This file contains code that helps you get started on the
  7. % linear exercise. You will need to complete the following functions
  8. % in this exericse:
  9. %
  10. % warmUpExercise.m
  11. % plotData.m
  12. % gradientDescent.m
  13. % computeCost.m
  14. % gradientDescentMulti.m
  15. % computeCostMulti.m
  16. % featureNormalize.m
  17. % normalEqn.m
  18. %
  19. % For this exercise, you will not need to change any code in this file,
  20. % or any other files other than those mentioned above.
  21. %
  22. % x refers to the population size in 10,000s
  23. % y refers to the profit in $10,000s
  24. %
  25.  
  26. %% Initialization
  27. clear ; close all; clc
  28.  
  29. %% ==================== Part 1: Basic Function ====================
  30. % Complete warmUpExercise.m
  31. fprintf('Running warmUpExercise ... \n');
  32. fprintf('5x5 Identity Matrix: \n');
  33. warmUpExercise()
  34.  
  35. fprintf('Program paused. Press enter to continue.\n');
  36. pause;
  37.  
  38.  
  39. %% ======================= Part 2: Plotting =======================
  40. fprintf('Plotting Data ...\n')
  41. data = load('ex1data1.txt');
  42. X = data(:, 1); y = data(:, 2);
  43. m = length(y); % number of training examples
  44.  
  45. % Plot Data
  46. % Note: You have to complete the code in plotData.m
  47. plotData(X, y);
  48.  
  49. fprintf('Program paused. Press enter to continue.\n');
  50. pause;
  51.  
  52. %% =================== Part 3: Cost and Gradient descent ===================
  53.  
  54. X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
  55. theta = zeros(2, 1); % initialize fitting parameters
  56.  
  57. % Some gradient descent settings
  58. iterations = 1500;
  59. alpha = 0.01;
  60.  
  61. fprintf('\nTesting the cost function ...\n')
  62. % compute and display initial cost
  63. J = computeCost(X, y, theta);
  64. fprintf('With theta = [0 ; 0]\nCost computed = %f\n', J);
  65. fprintf('Expected cost value (approx) 32.07\n');
  66.  
  67. % further testing of the cost function
  68. J = computeCost(X, y, [-1 ; 2]);
  69. fprintf('\nWith theta = [-1 ; 2]\nCost computed = %f\n', J);
  70. fprintf('Expected cost value (approx) 54.24\n');
  71.  
  72. fprintf('Program paused. Press enter to continue.\n');
  73. pause;
  74.  
  75. fprintf('\nRunning Gradient Descent ...\n')
  76. % run gradient descent
  77. theta = gradientDescent(X, y, theta, alpha, iterations);
  78.  
  79. % print theta to screen
  80. fprintf('Theta found by gradient descent:\n');
  81. fprintf('%f\n', theta);
  82. fprintf('Expected theta values (approx)\n');
  83. fprintf(' -3.6303\n 1.1664\n\n');
  84.  
  85. % Plot the linear fit
  86. hold on; % keep previous plot visible
  87. plot(X(:,2), X*theta, '-')
  88. legend('Training data', 'Linear regression')
  89. hold off % don't overlay any more plots on this figure
  90.  
  91. % Predict values for population sizes of 35,000 and 70,000
  92. predict1 = [1, 3.5] *theta;
  93. fprintf('For population = 35,000, we predict a profit of %f\n',...
  94. predict1*10000);
  95. predict2 = [1, 7] * theta;
  96. fprintf('For population = 70,000, we predict a profit of %f\n',...
  97. predict2*10000);
  98.  
  99. fprintf('Program paused. Press enter to continue.\n');
  100. pause;
  101.  
  102. %% ============= Part 4: Visualizing J(theta_0, theta_1) =============
  103. fprintf('Visualizing J(theta_0, theta_1) ...\n')
  104.  
  105. % Grid over which we will calculate J
  106. theta0_vals = linspace(-10, 10, 100);
  107. theta1_vals = linspace(-1, 4, 100);
  108.  
  109. % initialize J_vals to a matrix of 0's
  110. J_vals = zeros(length(theta0_vals), length(theta1_vals));
  111.  
  112. % Fill out J_vals
  113. for i = 1:length(theta0_vals)
  114. for j = 1:length(theta1_vals)
  115. t = [theta0_vals(i); theta1_vals(j)];
  116. J_vals(i,j) = computeCost(X, y, t);
  117. end
  118. end
  119.  
  120.  
  121. % Because of the way meshgrids work in the surf command, we need to
  122. % transpose J_vals before calling surf, or else the axes will be flipped
  123. J_vals = J_vals';
  124. % Surface plot
  125. figure;
  126. surf(theta0_vals, theta1_vals, J_vals)
  127. xlabel('\theta_0'); ylabel('\theta_1');
  128.  
  129. % Contour plot
  130. figure;
  131. % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
  132. contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
  133. xlabel('\theta_0'); ylabel('\theta_1');
  134. hold on;
  135. plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement