Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import sys
- import numpy as np
- from learning_functions.perform_learning import perform_learning
- from keras_models.detection import detection_unet
- # inputs to the model
- model_params = {'kernel_size': (3, 3, 3),
- 'filters': 16,
- 'weights': np.array([0.1, 0.9]),
- 'learning_rate': 0.001}
- perform_learning(training_sample_dir="/content/Data/Train",
- val_sample_dir="/content/Data/Test",
- batch_size=16,
- three_d=True,
- sample_channels=1,
- categorise=True,
- output_classes=2,
- model_func=detection_unet,
- model_params=model_params,
- epochs=50,
- model_path="/content/model_path",
- checkpoint_path="/content/checkpoint_path/detection_model.{epoch:02d}.h5",
- log_name="detection",
- shuffle=True)
Advertisement
Add Comment
Please, Sign In to add comment