﻿

# Untitled

Jan 10th, 2021
820
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
1. box% sage
2. ┌────────────────────────────────────────────────────────────────────┐
3. │ SageMath version 9.2, Release Date: 2020-10-24                     │
4. │ Using Python 3.9.1. Type "help()" for help.                        │
5. └────────────────────────────────────────────────────────────────────┘
6. sage: R.<c1,c2,c3,c4,A,B,C,e1,e2,e3,e4,alpha> = PolynomialRing(QQ, order='lex')
7. sage: G = ideal(-A+(c1+c2)*(c3+c4), -B+(c1+c3)*(c2+c4), -C+(c1+c4)*(c2+c3), -e1+c1+c2+c3+c4, -e2+c1*c2+c1*c3+c1*c4+c2*c3+c2*c4+c3*c4, -e3+c1*c2*c3+c1*c2*c4+c1*c3*c4+c2*c3*c4, -e4+c1*c2*c3*c4).groebner_basis()
8. sage: ((A-alpha)*(B-alpha)*(C-alpha)).reduce(G)
9. -e1^2*e4 + e1*e2*e3 - e1*e3*alpha - e2^2*alpha + 2*e2*alpha^2 - e3^2 + 4*e4*alpha - alpha^3
10. sage: G_ = ideal(-A+c1*c2+c3*c4, -B+c1*c3+c2*c4, -C+c1*c4+c2*c3, -e1+c1+c2+c3+c4, -e2+c1*c2+c1*c3+c1*c4+c2*c3+c2*c4+c3*c4, -e3+c1*c2*c3+c1*c2*c4+c1*c3*c4+c2*c3*c4, -e4+c1*c2*c3*c4).groebner_basis()
11. sage: ((A-alpha)*(B-alpha)*(C-alpha)).reduce(G_)
12. e1^2*e4 - e1*e3*alpha - 4*e2*e4 + e2*alpha^2 + e3^2 + 4*e4*alpha - alpha^3
13. sage:
RAW Paste Data