Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Clear[f, A, B, n, s, a, b, x, m];
- f[x_] = Zeta[x];
- A[n_, s_] =
- Sum[(-1)^(k - 1)*Binomial[n - 1, k - 1]/f[s + k/n - 1/n], {k, 1, n}];
- B[n_, s_] =
- Sum[(-1)^(k - 1)*Binomial[n - 1, k - 1]/f[s + k/n], {k, 1, n}];
- X[n_, s_] =
- Sum[(-1)^(k - 1)*Binomial[n - 1, k - 1]/f[-s + k/n - 1/n], {k, 1,
- n}];
- Y[n_, s_] =
- Sum[(-1)^(k - 1)*Binomial[n - 1, k - 1]/f[-s + k/n], {k, 1, n}];
- n = 120;
- s = N[-5 + 2*I, 200];
- Block[{$MaxExtraPrecision = 600}, N[A[n, s]/B[n, s], 20]]
- Block[{$MaxExtraPrecision = 600}, N[X[n, s]/Y[n, s], 20]]
- Clear[xy, s, aa, bb, ab, AB, XY];
- aa = 4;
- bb = 2;
- ab = AB /. Solve[1/(1 - AB) + s == -aa, AB][[1]][[1]];
- xy = XY /. Solve[1/(1 - XY) - s == -bb, XY][[1]][[1]];
- s = N[-5 + 2*I, 20];
- ab
- xy
Advertisement
Add Comment
Please, Sign In to add comment