Guest User

opa134

a guest
Jan 27th, 2018
293
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 11.30 KB | None | 0 0
  1. * OPA134 (PSpice FORMAT)
  2.  
  3. * OPA134 REV A BY MAREK LIS
  4. * GREEN-LIS MACRO-MODEL ARCHITECTURE
  5. * DECEMBER 19, 2013
  6.  
  7. ********************************************
  8. ** THIS FILE WAS CREATED BY TINA **
  9. ** (C) 1996-2006 DESIGNSOFT, INC. **
  10. ********************************************
  11.  
  12. * THIS MACROMODEL HAS BEEN OPTIMIZED TO MODEL THE AC, DC, NOISE, AND TRANSIENT RESPONSE PERFORMANCE WITHIN
  13. * THE DEVICE DATA SHEET SPECIFIED LIMITS. CORRECT OPERATION OF THIS MACROMODEL HAS BEEN VERIFIED ON DESIGNSOFT
  14. * TINA VERSION 7.0.80.224 SF. FOR HELP WITH OTHER ANALOG SIMULATION SOFTWARE, PLEASE CONSULT THE SOFTWARE SUPPLIER.
  15. *
  16. * COPYRIGHT 2011 BY TEXAS INSTRUMENTS CORPORATION
  17. *
  18. * BEGIN MODEL OPA134
  19. *
  20. *GREEN-LIS MACRO-MODEL SIMULATED TYPICAL PARAMETERS:
  21. *
  22. *OPEN LOOP GAIN AND PHASE VS FREQUENCY WITH RL AND CL EFFECTS
  23. *INPUT COMMON MODE REJECTION WITH FREQUENCY
  24. *POWER SUPPLY REJECTION WITH FREQUENCY
  25. *INPUT IMPEDANCE VS FREQUENCY
  26. *OUTPUT IMPEDANCE VS FREQUENCY AND OUTPUT CURRENT
  27. *INPUT VOLTAGE NOISE VS FREQUENCY
  28. *INPUT CURRENT NOISE VS FREQUENCY
  29. *OUTPUT VOLTAGE SWING VS OUTPUT CURRENT
  30. *SHORT-CIRCUIT OUTPUT CURRENT
  31. *QUIESCENT CURRENT VS SUPPLY VOLTAGE
  32. *SETTLING TIME VS CAPACITIVE LOAD
  33. *SLEW RATE
  34. *SMALL SIGNAL OVERSHOOT VS CAPACITIVE LOAD
  35. *LARGE SIGNAL RESPONSE
  36. *OVERLOAD RECOVERY TIME
  37. *INPUT BIAS CURRENT
  38. *INPUT VOLTAGE OFFSET
  39. *INPUT COMMON MODE RANGE
  40. *OUTPUT CURRENT COMING THROUGH THE SUPPLY RAILS
  41.  
  42. .SUBCKT OPA134 +IN -IN V+ V- Vout
  43. V7 15 56 2.8
  44. Vos 28 47 -350U
  45. V11 58 59 100M
  46. V10 60 61 100M
  47. V6 11 66 10
  48. V5 67 11 10
  49. V4 63 65 10
  50. V1 64 62 10
  51. V9 78 16 2.8
  52. IS2 V+ 28 5P
  53. IS1 V+ V- 4M
  54. IS3 52 V- -7P
  55. V3 82 11 40
  56. V2 11 83 47
  57. R37 29 30 100MEG
  58. C4 31 29 1.00000000000000E-0016 IC=0
  59. C1 11 32 1N IC=0
  60. EVCVS1 10 11 7 33 -1
  61. R38 32 34 10
  62. VCCVS2_in 33 8
  63. HCCVS2 34 11 VCCVS2_in 1K
  64. XU7 32 11 33 30 VC_RES_0
  65. C25 10 31 2P IC=0
  66. C24 10 9 90N IC=0
  67. R32 9 31 10.5K
  68. R31 31 30 100MEG
  69. R30 10 31 500K
  70. EVCVS2 30 11 11 31 20MEG
  71. SW14 9 10 12 11 S_VSWITCH_1
  72. SW13 10 9 11 13 S_VSWITCH_2
  73. XR105 14 11 RNOISE_FREE_0
  74. XR105_2 35 11 RNOISE_FREE_1
  75. R24 11 20 1K
  76. R17 11 21 1K
  77. R11 11 36 1K
  78. R10 11 37 1K
  79. R9 11 12 1K
  80. R8 11 13 1K
  81. * L4 11 38 17M IC=0
  82. L1 39 11 1F IC=0
  83. R2 39 40 1
  84. GVCCS8 11 40 11 41 1
  85. XR109 42 11 RNOISE_FREE_1
  86. C3 42 11 3F IC=0
  87. GVCCS4 11 42 25 11 1U
  88. C2 43 11 3F IC=0
  89. XR109_2 43 11 RNOISE_FREE_2
  90. GVCCS3 11 43 42 11 1M
  91. R4 44 23 10M
  92. CinDiff 45 46 2P IC=0
  93. CinpCM 46 11 5P IC=0
  94. CinnCM 11 45 5P IC=0
  95. XIn11 47 45 FEMT_0
  96. L2 48 11 1F IC=0
  97. XR109_3 25 11 RNOISE_FREE_1
  98. XR109_4 49 11 RNOISE_FREE_1
  99. XVn11 46 47 VNSE_0
  100. XU14 50 11 51 52 VCVS_LIMIT_0
  101. L3 53 11 350U IC=0
  102. R1 48 50 1
  103. GVCCS2 11 50 11 54 1
  104. XU13 15 55 IDEAL_D_0
  105. EVCVS5 56 11 V- 11 1
  106. C11 49 11 4F IC=0
  107. XR109_5 24 11 RNOISE_FREE_2
  108. GVCCS12 11 25 49 11 1U
  109. XU5 17 11 V+ 18 VCVS_LIMIT_1
  110. XU6 11 17 19 V- VCVS_LIMIT_2
  111. C15 V+ V- 10P IC=0
  112. C22 11 22 1P IC=0
  113. R29 22 14 1
  114. C23 11 26 1P IC=0
  115. C9 57 11 10P IC=0
  116. R26 57 17 10
  117. C21 11 12 1P IC=0
  118. C20 11 13 1P IC=0
  119. C19 20 11 1P IC=0
  120. C17 21 11 1P IC=0
  121. C16 11 36 1P IC=0
  122. C12 37 11 1P IC=0
  123. R13 7 26 1
  124. R36 26 61 1M
  125. R35 26 59 1M
  126. SW12 62 58 20 11 S_VSWITCH_3
  127. SW11 60 63 11 21 S_VSWITCH_4
  128. R34 26 64 1K
  129. R33 26 65 1K
  130. SW10 67 14 22 11 S_VSWITCH_5
  131. SW9 14 66 11 22 S_VSWITCH_6
  132. R25 68 20 1
  133. R19 69 21 1
  134. R16 70 36 1
  135. R14 71 37 1
  136. R12 72 12 1
  137. R7 73 13 1
  138. R5 74 24 10M
  139. R6 75 14 10M
  140. R15 0 11 100MEG
  141. C13 24 11 1F IC=0
  142. GVCCS1 11 24 43 11 1M
  143. GIsinking V- 11 76 11 1M
  144. GIsourcing V+ 11 77 11 1M
  145. R23 76 11 10K
  146. SW7 17 76 57 11 S_VSWITCH_7
  147. R21 11 77 10K
  148. SW8 17 77 57 11 S_VSWITCH_8
  149. SW4 75 72 12 11 S_VSWITCH_9
  150. SW3 73 75 11 13 S_VSWITCH_10
  151. XU3 63 27 73 11 VCVS_LIMIT_3
  152. XU1 62 27 72 11 VCVS_LIMIT_3
  153. SW2 44 68 20 11 S_VSWITCH_11
  154. SW1 69 44 11 21 S_VSWITCH_12
  155. XU8 28 V+ IDEAL_D_1
  156. XU12 V- 28 IDEAL_D_1
  157. EVCVS6 78 11 V+ 11 1
  158. R22 79 55 100
  159. EVCVS4 79 11 28 11 1
  160. XU2 55 16 IDEAL_D_0
  161. SW6 74 70 36 11 S_VSWITCH_13
  162. SW5 71 74 11 37 S_VSWITCH_14
  163. XU26 55 52 11 80 VCCS_LIMIT_0
  164. XU4 80 11 11 14 VCCS_LIMIT_1
  165. LPSR 81 11 3.16M IC=0
  166. XVCVSPSRR 40 11 51 45 VCVS_LIMIT_4
  167. XU22 82 17 69 11 VCVS_LIMIT_5
  168. XU21 83 17 68 11 VCVS_LIMIT_5
  169. XU20 19 Vout 70 11 VCVS_LIMIT_5
  170. XU19 18 Vout 71 11 VCVS_LIMIT_6
  171. XU11 V- 52 IDEAL_D_1
  172. XU10 52 V+ IDEAL_D_1
  173. C10 23 11 1F IC=0
  174. C5 25 11 4F IC=0
  175. XR109_6 23 11 RNOISE_FREE_2
  176. GVCCS15 11 23 24 11 1M
  177. GVCCS10 11 49 35 11 1U
  178. R20 +IN 46 100
  179. R18 -IN 45 100
  180. GVCCS6 11 35 27 11 1U
  181. XR102 84 85 RNOISE_FREE_1
  182. XR101 86 84 RNOISE_FREE_1
  183. C6 84 0 1 IC=0
  184. XR105_3 27 11 RNOISE_FREE_1
  185. XR103 11 80 RNOISE_FREE_1
  186. EVCVS34 11 0 84 0 1
  187. RPSR 81 41 1
  188. GVCCS11 11 41 V+ V- 5U
  189. RCM 53 54 1
  190. EVCVS29 86 0 V+ 0 1
  191. EVCVS28 85 0 V- 0 1
  192. GVCCS7 11 54 28 11 10U
  193. VCCVS1_in 8 Vout
  194. HCCVS1 17 11 VCCVS1_in 1K
  195. GVCCS5 11 27 14 11 1U
  196. Ccc 14 11 3.8U IC=0
  197. EVCVS3 7 11 23 11 1
  198. .MODEL S_VSWITCH_1 VSWITCH (RON=1 ROFF=100MEG VON=100M VOFF=-100M)
  199. .MODEL S_VSWITCH_2 VSWITCH (RON=1 ROFF=100MEG VON=100M VOFF=-100M)
  200. .MODEL S_VSWITCH_3 VSWITCH (RON=1 ROFF=10MEG VON=100M VOFF=-100M)
  201. .MODEL S_VSWITCH_4 VSWITCH (RON=1 ROFF=10MEG VON=100M VOFF=-100M)
  202. .MODEL S_VSWITCH_5 VSWITCH (RON=10M ROFF=100MEG VON=150 VOFF=130)
  203. .MODEL S_VSWITCH_6 VSWITCH (RON=10M ROFF=100MEG VON=150 VOFF=130)
  204. .MODEL S_VSWITCH_7 VSWITCH (RON=1M ROFF=10MEG VON=-10M VOFF=0)
  205. .MODEL S_VSWITCH_8 VSWITCH (RON=1M ROFF=10MEG VON=10M VOFF=0)
  206. .MODEL S_VSWITCH_9 VSWITCH (RON=1 ROFF=10MEG VON=1 VOFF=-1)
  207. .MODEL S_VSWITCH_10 VSWITCH (RON=1 ROFF=10MEG VON=1 VOFF=-1)
  208. .MODEL S_VSWITCH_11 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
  209. .MODEL S_VSWITCH_12 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
  210. .MODEL S_VSWITCH_13 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
  211. .MODEL S_VSWITCH_14 VSWITCH (RON=1 ROFF=1G VON=10 VOFF=-10)
  212. .ENDS
  213.  
  214.  
  215. *VOLTAGE CONTROLLED RESISTOR
  216. .SUBCKT VC_RES_0 1 2 3 4
  217. * VC+ VC- RES1 RES2
  218. ERES 3 40 VALUE = {(I(VSENSE) * (ABS(V(1,2))*ABS(V(1,2))*0.000352-0.02359*ABS(V(1,2))+0.5922))*140000*24200*50*2/414500}
  219. VSENSE 40 4 DC 0
  220. .ENDS VC_RES_0
  221.  
  222.  
  223. * NOISELESS RESISTOR
  224. .SUBCKT RNOISE_FREE_0 1 2
  225. *ROHMS = VALUE IN OHMS OF NOISELESS RESISTOR
  226. .PARAM ROHMS=1E4
  227. ERES 1 3 VALUE = { I(VSENSE) * ROHMS }
  228. RDUMMY 30 3 1
  229. VSENSE 30 2 DC 0V
  230. .ENDS RNOISE_FREE_0
  231.  
  232.  
  233. * NOISELESS RESISTOR
  234. .SUBCKT RNOISE_FREE_1 1 2
  235. *ROHMS = VALUE IN OHMS OF NOISELESS RESISTOR
  236. .PARAM ROHMS=1E6
  237. ERES 1 3 VALUE = { I(VSENSE) * ROHMS }
  238. RDUMMY 30 3 1
  239. VSENSE 30 2 DC 0V
  240. .ENDS RNOISE_FREE_1
  241.  
  242.  
  243. * NOISELESS RESISTOR
  244. .SUBCKT RNOISE_FREE_2 1 2
  245. *ROHMS = VALUE IN OHMS OF NOISELESS RESISTOR
  246. .PARAM ROHMS=1E3
  247. ERES 1 3 VALUE = { I(VSENSE) * ROHMS }
  248. RDUMMY 30 3 1
  249. VSENSE 30 2 DC 0V
  250. .ENDS RNOISE_FREE_2
  251.  
  252.  
  253. * BEGIN PROG NSE FEMTO AMP/RT-HZ
  254. .SUBCKT FEMT_0 1 2
  255. * BEGIN SETUP OF NOISE GEN - FEMPTOAMPS/RT-HZ
  256. * INPUT THREE VARIABLES
  257. * SET UP INSE 1/F
  258. * FA/RHZ AT 1/F FREQ
  259. .PARAM NLFF=.001
  260. * FREQ FOR 1/F VAL
  261. .PARAM FLWF=0.001
  262. * SET UP INSE FB
  263. * FA/RHZ FLATBAND
  264. .PARAM NVRF=0.1
  265. * END USER INPUT
  266. * START CALC VALS
  267. .PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164}
  268. .PARAM RNVF={1.184*PWR(NVRF,2)}
  269. .MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16
  270. * END CALC VALS
  271. I1 0 7 10E-3
  272. I2 0 8 10E-3
  273. D1 7 0 DVNF
  274. D2 8 0 DVNF
  275. E1 3 6 7 8 {GLFF}
  276. R1 3 0 1E9
  277. R2 3 0 1E9
  278. R3 3 6 1E9
  279. E2 6 4 5 0 10
  280. R4 5 0 {RNVF}
  281. R5 5 0 {RNVF}
  282. R6 3 4 1E9
  283. R7 4 0 1E9
  284. G1 1 2 3 4 1E-6
  285. C1 1 0 1E-15
  286. C2 2 0 1E-15
  287. C3 1 2 1E-15
  288. .ENDS
  289. * END PROG NSE FEMTO AMP/RT-HZ
  290.  
  291.  
  292. * BEGIN PROG NSE NANO VOLT/RT-HZ
  293. .SUBCKT VNSE_0 1 2
  294. * BEGIN SETUP OF NOISE GEN - NANOVOLT/RT-HZ
  295. * INPUT THREE VARIABLES
  296. * SET UP VNSE 1/F
  297. * NV/RHZ AT 1/F FREQ
  298. .PARAM NLF=83
  299. * FREQ FOR 1/F VAL
  300. .PARAM FLW=1
  301. * SET UP VNSE FB
  302. * NV/RHZ FLATBAND
  303. .PARAM NVR=7.5
  304. * END USER INPUT
  305. * START CALC VALS
  306. .PARAM GLF={PWR(FLW,0.25)*NLF/1164}
  307. .PARAM RNV={1.184*PWR(NVR,2)}
  308. .MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16
  309. * END CALC VALS
  310. I1 0 7 10E-3
  311. I2 0 8 10E-3
  312. D1 7 0 DVN
  313. D2 8 0 DVN
  314. E1 3 6 7 8 {GLF}
  315. R1 3 0 1E9
  316. R2 3 0 1E9
  317. R3 3 6 1E9
  318. E2 6 4 5 0 10
  319. R4 5 0 {RNV}
  320. R5 5 0 {RNV}
  321. R6 3 4 1E9
  322. R7 4 0 1E9
  323. E3 1 2 3 4 1
  324. C1 1 0 1E-15
  325. C2 2 0 1E-15
  326. C3 1 2 1E-15
  327. .ENDS
  328. * END PROG NSE NANOV/RT-HZ
  329.  
  330.  
  331. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  332. .SUBCKT VCVS_LIMIT_0 VC+ VC- VOUT+ VOUT-
  333. *
  334. .PARAM GAIN = 1
  335. .PARAM VPOS = 10M
  336. .PARAM VNEG = -10M
  337. E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
  338. .ENDS VCVS_LIMIT_0
  339.  
  340.  
  341. *TG IDEAL DIODE
  342. .SUBCKT IDEAL_D_0 A C
  343. D1 A C DNOM
  344. .MODEL DNOM D (TT=10P CJO=1E-18 IS=1E-15 RS=1E-3)
  345. .ENDS IDEAL_D_0
  346.  
  347.  
  348. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  349. .SUBCKT VCVS_LIMIT_1 VC+ VC- VOUT+ VOUT-
  350. *
  351.  
  352. E1 VOUT+ VOUT- TABLE {ABS(V(VC+,VC-))} = (0.0,0.9)(20,2.0)(30,2.6)(39.9,3.7)
  353. .ENDS VCVS_LIMIT_1
  354.  
  355.  
  356.  
  357. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  358. .SUBCKT VCVS_LIMIT_2 VC+ VC- VOUT+ VOUT-
  359. *
  360.  
  361. E1 VOUT+ VOUT- TABLE {ABS(V(VC+,VC-))} = (0.0,0.3)(3,0.3)(5,0.5)(6,0.9)(46.9,3.3)
  362. .ENDS VCVS_LIMIT_2
  363.  
  364.  
  365.  
  366. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  367. .SUBCKT VCVS_LIMIT_3 VC+ VC- VOUT+ VOUT-
  368. *
  369. .PARAM GAIN = 100
  370. .PARAM VPOS = 6000
  371. .PARAM VNEG = -6000
  372. E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
  373. .ENDS VCVS_LIMIT_3
  374.  
  375.  
  376. *TG IDEAL DIODE
  377. .SUBCKT IDEAL_D_1 A C
  378. D1 A C DNOM
  379. .MODEL DNOM D (TT=10P CJO=1E-18 IS=1E-15 RS=1E-3)
  380. .ENDS IDEAL_D_1
  381.  
  382.  
  383. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  384. .SUBCKT VCCS_LIMIT_0 VC+ VC- IOUT+ IOUT-
  385. *
  386. .PARAM GAIN = 1M
  387. .PARAM IPOS = .5
  388. .PARAM INEG = -.5
  389. G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
  390. .ENDS VCCS_LIMIT_0
  391.  
  392.  
  393. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  394. .SUBCKT VCCS_LIMIT_1 VC+ VC- IOUT+ IOUT-
  395. *
  396. .PARAM GAIN = 200M
  397. .PARAM IPOS = 76
  398. .PARAM INEG = -76
  399. G1 IOUT+ IOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),INEG,IPOS)}
  400. .ENDS VCCS_LIMIT_1
  401.  
  402.  
  403. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  404. .SUBCKT VCVS_LIMIT_4 VC+ VC- VOUT+ VOUT-
  405. *
  406. .PARAM GAIN = -1
  407. .PARAM VPOS = 10M
  408. .PARAM VNEG = -10M
  409. E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
  410. .ENDS VCVS_LIMIT_4
  411.  
  412.  
  413. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  414. .SUBCKT VCVS_LIMIT_5 VC+ VC- VOUT+ VOUT-
  415. *
  416. .PARAM GAIN = 100
  417. .PARAM VPOS = 5000
  418. .PARAM VNEG = -5000
  419. E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
  420. .ENDS VCVS_LIMIT_5
  421.  
  422.  
  423. *VOLTAGE CONTROLLED SOURCE WITH LIMITS
  424. .SUBCKT VCVS_LIMIT_6 VC+ VC- VOUT+ VOUT-
  425. *
  426. .PARAM GAIN = 100
  427. .PARAM VPOS = 5000
  428. .PARAM VNEG = -5000
  429. E1 VOUT+ VOUT- VALUE={LIMIT(GAIN*V(VC+,VC-),VNEG,VPOS)}
  430. .ENDS VCVS_LIMIT_6
  431.  
  432.  
  433. .END
Advertisement
Add Comment
Please, Sign In to add comment