Advertisement
MatsGranvik

Limiting ratios giving zeta zeros vs Newton Raphson

Jul 12th, 2020
183
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.09 KB | None | 0 0
  1. (*start apparently equivalent to Newton Raphson*)
  2. cons = 9;
  3. ww = 400;
  4. div = 10;
  5. Monitor[TableForm[zz = Table[Clear[t, b, n, k, nn, x];
  6. z = N[cons + w/div, 20];
  7. polynomial = Normal[Series[Zeta[(x + z*N[I, 20])], {x, 0, 10}]];
  8. digits = 20;
  9. b = With[{nn = 20},
  10. CoefficientList[Series[1/polynomial, {x, 0, nn}], x]];
  11. nn = Length[b] - 1;
  12. x = z*I + N[b[[nn - 1]]/b[[nn]], digits], {w, 0, ww}]];, w]
  13. g1 = ListLinePlot[Flatten[Im[zz]], DataRange -> {cons, cons + ww/div}]
  14. g2 = ListLinePlot[Flatten[Re[zz]], DataRange -> {cons, cons + ww/div},
  15. PlotRange -> {-2, 2}]
  16. zz
  17. (*end apparently equivalent to Newton Raphson*)
  18.  
  19. (* approximation of logarithmic derivative giving Newton Raphson \
  20. iteration*)
  21. (*start*)
  22. c = 1 + 1/1000;
  23. f[t_] = -1/((Zeta[1/2 + I*t]*Zeta[c])/Zeta[1/2 + I*t + c - 1] -
  24. Zeta[c]);
  25. g[t_] = Im[(1/2 + I*t) - f[t]];
  26. min = cons;
  27. max = cons + ww/div;
  28. g2 = Show[Plot[g[g[g[g[g[g[t]]]]]], {t, min, max}, PlotStyle -> Red],
  29. Table[Graphics[{PointSize[Large],
  30. Point[{Im[ZetaZero[n]], Im[ZetaZero[n]]}]}], {n, 1, 14}]]
  31.  
  32. Show[g1, g2]
  33. (*end*)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement