Guest User

Team-droid-x governor

a guest
Aug 12th, 2016
70
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 16.15 KB | None | 0 0
  1. /*
  2. * drivers/cpufreq/cpufreq_team-droid-x.c
  3. *
  4. * Copyright (C) 2016 Harshit Jain (Team Droid X) <harshitjain6751@gmail.com>
  5. * Copyright (C) 2016 Vipul Jha2 (Team Droid X) <vipuljha08@gmail.com>
  6. * Copyright (C) 2016 Evan Dantas (Team Droid X) <evandants9@gmail.com>
  7. * Copyright (C) 2016 engstk <engstk@mail.ru>
  8. *
  9. * Based on the Conservative governor by:
  10. *
  11. * Copyright (C) 2001 Russell King
  12. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  13. * Jun Nakajima <jun.nakajima@intel.com>
  14. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  15. * (C) 2014 Jamison904 <infamousprollc@gmail.com>
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License version 2 as
  19. * published by the Free Software Foundation.
  20. */
  21.  
  22. #include <asm/cputime.h>
  23. #include <linux/kthread.h>
  24. #include <linux/time.h>
  25. #include <linux/timer.h>
  26. #include <linux/cpumask.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/cpufreq.h>
  31. #include <linux/cpu.h>
  32. #include <linux/jiffies.h>
  33. #include <linux/kernel_stat.h>
  34. #include <linux/mutex.h>
  35. #include <linux/hrtimer.h>
  36. #include <linux/tick.h>
  37. #include <linux/ktime.h>
  38. #include <linux/sched.h>
  39. #include <linux/input.h>
  40. #include <linux/workqueue.h>
  41. #include <linux/slab.h>
  42. #ifdef CONFIG_HAS_EARLYSUSPEND
  43. #include <linux/earlysuspend.h>
  44. #endif
  45. /*
  46. * dbs is used in this file as a shortform for demandbased switching
  47. * It helps to keep variable names smaller, simpler
  48. */
  49.  
  50. #define DEF_FREQUENCY_UP_THRESHOLD (70)
  51. #define DEF_FREQUENCY_DOWN_THRESHOLD (30)
  52.  
  53. /*
  54. * The polling frequency of this governor depends on the capability of
  55. * the processor. Default polling frequency is 1000 times the transition
  56. * latency of the processor. The governor will work on any processor with
  57. * transition latency <= 10mS, using appropriate sampling
  58. * rate.
  59. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  60. * this governor will not work.
  61. * All times here are in uS.
  62. */
  63. #define MIN_SAMPLING_RATE_RATIO (2)
  64.  
  65. static unsigned int min_sampling_rate;
  66.  
  67. #define LATENCY_MULTIPLIER (1000)
  68. #define MIN_LATENCY_MULTIPLIER (100)
  69. #define DEF_SAMPLING_DOWN_FACTOR (1)
  70. #define MAX_SAMPLING_DOWN_FACTOR (10)
  71. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  72.  
  73. static void do_dbs_timer(struct work_struct *work);
  74.  
  75. struct cpu_dbs_info_s {
  76. cputime64_t prev_cpu_idle;
  77. cputime64_t prev_cpu_wall;
  78. cputime64_t prev_cpu_nice;
  79. struct cpufreq_policy *cur_policy;
  80. struct delayed_work work;
  81. unsigned int down_skip;
  82. unsigned int requested_freq;
  83. int cpu;
  84. unsigned int enable:1;
  85. /*
  86. * percpu mutex that serializes governor limit change with
  87. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  88. * when user is changing the governor or limits.
  89. */
  90. struct mutex timer_mutex;
  91. };
  92. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
  93.  
  94. static unsigned int dbs_enable; /* number of CPUs using this policy */
  95.  
  96. /*
  97. * dbs_mutex protects dbs_enable in governor start/stop.
  98. */
  99. static DEFINE_MUTEX(dbs_mutex);
  100.  
  101. static struct dbs_tuners {
  102. unsigned int sampling_rate;
  103. unsigned int sampling_down_factor;
  104. unsigned int up_threshold;
  105. unsigned int down_threshold;
  106. unsigned int ignore_nice;
  107. unsigned int freq_step;
  108. } dbs_tuners_ins = {
  109. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  110. .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
  111. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  112. .ignore_nice = 0,
  113. .freq_step = 5,
  114. };
  115.  
  116. /* keep track of frequency transitions */
  117. static int
  118. dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  119. void *data)
  120. {
  121. struct cpufreq_freqs *freq = data;
  122. struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
  123. freq->cpu);
  124.  
  125. struct cpufreq_policy *policy;
  126.  
  127. if (!this_dbs_info->enable)
  128. return 0;
  129.  
  130. policy = this_dbs_info->cur_policy;
  131.  
  132. /*
  133. * we only care if our internally tracked freq moves outside
  134. * the 'valid' ranges of freqency available to us otherwise
  135. * we do not change it
  136. */
  137. if (this_dbs_info->requested_freq > policy->max
  138. || this_dbs_info->requested_freq < policy->min)
  139. this_dbs_info->requested_freq = freq->new;
  140.  
  141. return 0;
  142. }
  143.  
  144. static struct notifier_block dbs_cpufreq_notifier_block = {
  145. .notifier_call = dbs_cpufreq_notifier
  146. };
  147.  
  148. /************************** sysfs interface ************************/
  149. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  150. struct attribute *attr, char *buf)
  151. {
  152. return sprintf(buf, "%u\n", min_sampling_rate);
  153. }
  154.  
  155. define_one_global_ro(sampling_rate_min);
  156.  
  157. /* cpufreq_conservativex Governor Tunables */
  158. #define show_one(file_name, object) \
  159. static ssize_t show_##file_name \
  160. (struct kobject *kobj, struct attribute *attr, char *buf) \
  161. { \
  162. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  163. }
  164. show_one(sampling_rate, sampling_rate);
  165. show_one(sampling_down_factor, sampling_down_factor);
  166. show_one(up_threshold, up_threshold);
  167. show_one(down_threshold, down_threshold);
  168. show_one(ignore_nice_load, ignore_nice);
  169. show_one(freq_step, freq_step);
  170.  
  171. static ssize_t store_sampling_down_factor(struct kobject *a,
  172. struct attribute *b,
  173. const char *buf, size_t count)
  174. {
  175. unsigned int input;
  176. int ret;
  177. ret = sscanf(buf, "%u", &input);
  178.  
  179. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  180. return -EINVAL;
  181.  
  182. dbs_tuners_ins.sampling_down_factor = input;
  183. return count;
  184. }
  185.  
  186. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  187. const char *buf, size_t count)
  188. {
  189. unsigned int input;
  190. int ret;
  191. ret = sscanf(buf, "%u", &input);
  192.  
  193. if (ret != 1)
  194. return -EINVAL;
  195.  
  196. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  197. return count;
  198. }
  199.  
  200. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  201. const char *buf, size_t count)
  202. {
  203. unsigned int input;
  204. int ret;
  205. ret = sscanf(buf, "%u", &input);
  206.  
  207. if (ret != 1 || input > 100 ||
  208. input <= dbs_tuners_ins.down_threshold)
  209. return -EINVAL;
  210.  
  211. dbs_tuners_ins.up_threshold = input;
  212. return count;
  213. }
  214.  
  215. static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
  216. const char *buf, size_t count)
  217. {
  218. unsigned int input;
  219. int ret;
  220. ret = sscanf(buf, "%u", &input);
  221.  
  222. /* cannot be lower than 11 otherwise freq will not fall */
  223. if (ret != 1 || input < 11 || input > 100 ||
  224. input >= dbs_tuners_ins.up_threshold)
  225. return -EINVAL;
  226.  
  227. dbs_tuners_ins.down_threshold = input;
  228. return count;
  229. }
  230.  
  231. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  232. const char *buf, size_t count)
  233. {
  234. unsigned int input;
  235. int ret;
  236.  
  237. unsigned int j;
  238.  
  239. ret = sscanf(buf, "%u", &input);
  240. if (ret != 1)
  241. return -EINVAL;
  242.  
  243. if (input > 1)
  244. input = 1;
  245.  
  246. if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
  247. return count;
  248.  
  249. dbs_tuners_ins.ignore_nice = input;
  250.  
  251. /* we need to re-evaluate prev_cpu_idle */
  252. for_each_online_cpu(j) {
  253. struct cpu_dbs_info_s *dbs_info;
  254. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  255. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  256. &dbs_info->prev_cpu_wall, 0);
  257. if (dbs_tuners_ins.ignore_nice)
  258. dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  259. }
  260. return count;
  261. }
  262.  
  263. static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
  264. const char *buf, size_t count)
  265. {
  266. unsigned int input;
  267. int ret;
  268. ret = sscanf(buf, "%u", &input);
  269.  
  270. if (ret != 1)
  271. return -EINVAL;
  272.  
  273. if (input > 100)
  274. input = 100;
  275.  
  276. /* no need to test here if freq_step is zero as the user might actually
  277. * want this, they would be crazy though :) */
  278. dbs_tuners_ins.freq_step = input;
  279. return count;
  280. }
  281.  
  282. define_one_global_rw(sampling_rate);
  283. define_one_global_rw(sampling_down_factor);
  284. define_one_global_rw(up_threshold);
  285. define_one_global_rw(down_threshold);
  286. define_one_global_rw(ignore_nice_load);
  287. define_one_global_rw(freq_step);
  288.  
  289. static struct attribute *dbs_attributes[] = {
  290. &sampling_rate_min.attr,
  291. &sampling_rate.attr,
  292. &sampling_down_factor.attr,
  293. &up_threshold.attr,
  294. &down_threshold.attr,
  295. &ignore_nice_load.attr,
  296. &freq_step.attr,
  297. NULL
  298. };
  299.  
  300. static struct attribute_group dbs_attr_group = {
  301. .attrs = dbs_attributes,
  302. .name = "team-droid-x",
  303. };
  304.  
  305. /************************** sysfs end ************************/
  306.  
  307. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  308. {
  309. unsigned int load = 0;
  310. unsigned int max_load = 0;
  311. unsigned int freq_target;
  312.  
  313. struct cpufreq_policy *policy;
  314. unsigned int j;
  315.  
  316. policy = this_dbs_info->cur_policy;
  317.  
  318. /*
  319. * Every sampling_rate, we check, if current idle time is less
  320. * than 20% (default), then we try to increase frequency
  321. * Every sampling_rate*sampling_down_factor, we check, if current
  322. * idle time is more than 80%, then we try to decrease frequency
  323. *
  324. * Any frequency increase takes it to the maximum frequency.
  325. * Frequency reduction happens at minimum steps of
  326. * 5% (default) of maximum frequency
  327. */
  328.  
  329. /* Get Absolute Load */
  330. for_each_cpu(j, policy->cpus) {
  331. struct cpu_dbs_info_s *j_dbs_info;
  332. cputime64_t cur_wall_time, cur_idle_time;
  333. unsigned int idle_time, wall_time;
  334.  
  335. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  336.  
  337. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, 0);
  338.  
  339. wall_time = (unsigned int)
  340. (cur_wall_time - j_dbs_info->prev_cpu_wall);
  341. j_dbs_info->prev_cpu_wall = cur_wall_time;
  342.  
  343. idle_time = (unsigned int)
  344. (cur_idle_time - j_dbs_info->prev_cpu_idle);
  345. j_dbs_info->prev_cpu_idle = cur_idle_time;
  346.  
  347. if (dbs_tuners_ins.ignore_nice) {
  348. cputime64_t cur_nice;
  349. unsigned long cur_nice_jiffies;
  350.  
  351. cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
  352. j_dbs_info->prev_cpu_nice;
  353. /*
  354. * Assumption: nice time between sampling periods will
  355. * be less than 2^32 jiffies for 32 bit sys
  356. */
  357. cur_nice_jiffies = (unsigned long)
  358. cputime64_to_jiffies64(cur_nice);
  359.  
  360. j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  361. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  362. }
  363.  
  364. if (unlikely(!wall_time || wall_time < idle_time))
  365. continue;
  366.  
  367. load = 100 * (wall_time - idle_time) / wall_time;
  368.  
  369. if (load > max_load)
  370. max_load = load;
  371. }
  372.  
  373. /*
  374. * break out if we 'cannot' reduce the speed as the user might
  375. * want freq_step to be zero
  376. */
  377. if (dbs_tuners_ins.freq_step == 0)
  378. return;
  379.  
  380. /* Check for frequency increase */
  381. if (max_load > dbs_tuners_ins.up_threshold) {
  382. this_dbs_info->down_skip = 0;
  383.  
  384. /* if we are already at full speed then break out early */
  385. if (this_dbs_info->requested_freq == policy->max)
  386. return;
  387.  
  388. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  389.  
  390. /* max freq cannot be less than 100. But who knows.... */
  391. if (unlikely(freq_target == 0))
  392. freq_target = 5;
  393.  
  394. this_dbs_info->requested_freq += freq_target;
  395. if (this_dbs_info->requested_freq > policy->max)
  396. this_dbs_info->requested_freq = policy->max;
  397.  
  398. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  399. CPUFREQ_RELATION_H);
  400. return;
  401. }
  402.  
  403. /*
  404. * The optimal frequency is the frequency that is the lowest that
  405. * can support the current CPU usage without triggering the up
  406. * policy. To be safe, we focus 10 points under the threshold.
  407. */
  408. if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
  409. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  410.  
  411. this_dbs_info->requested_freq -= freq_target;
  412. if (this_dbs_info->requested_freq < policy->min)
  413. this_dbs_info->requested_freq = policy->min;
  414.  
  415. /*
  416. * if we cannot reduce the frequency anymore, break out early
  417. */
  418. if (policy->cur == policy->min)
  419. return;
  420.  
  421. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  422. CPUFREQ_RELATION_H);
  423. return;
  424. }
  425. }
  426.  
  427. static void do_dbs_timer(struct work_struct *work)
  428. {
  429. struct cpu_dbs_info_s *dbs_info =
  430. container_of(work, struct cpu_dbs_info_s, work.work);
  431. unsigned int cpu = dbs_info->cpu;
  432.  
  433. /* We want all CPUs to do sampling nearly on same jiffy */
  434. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  435.  
  436. // delay -= jiffies % delay;
  437.  
  438. mutex_lock(&dbs_info->timer_mutex);
  439.  
  440. dbs_check_cpu(dbs_info);
  441.  
  442. schedule_delayed_work_on(cpu, &dbs_info->work, delay);
  443. mutex_unlock(&dbs_info->timer_mutex);
  444. }
  445.  
  446. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  447. {
  448. /* We want all CPUs to do sampling nearly on same jiffy */
  449. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  450.  
  451. // delay -= jiffies % delay;
  452.  
  453. dbs_info->enable = 1;
  454. INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
  455. schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
  456. }
  457.  
  458. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  459. {
  460. dbs_info->enable = 0;
  461. cancel_delayed_work_sync(&dbs_info->work);
  462. }
  463.  
  464. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  465. unsigned int event)
  466. {
  467. unsigned int cpu = policy->cpu;
  468. struct cpu_dbs_info_s *this_dbs_info;
  469. unsigned int j;
  470. int rc;
  471.  
  472. this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  473.  
  474. switch (event) {
  475. case CPUFREQ_GOV_START:
  476. if ((!cpu_online(cpu)) || (!policy->cur))
  477. return -EINVAL;
  478.  
  479. mutex_lock(&dbs_mutex);
  480.  
  481. for_each_cpu(j, policy->cpus) {
  482. struct cpu_dbs_info_s *j_dbs_info;
  483. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  484. j_dbs_info->cur_policy = policy;
  485.  
  486. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  487. &j_dbs_info->prev_cpu_wall, 0);
  488. if (dbs_tuners_ins.ignore_nice) {
  489. j_dbs_info->prev_cpu_nice =
  490. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  491. }
  492. }
  493. this_dbs_info->down_skip = 0;
  494. this_dbs_info->requested_freq = policy->cur;
  495.  
  496. mutex_init(&this_dbs_info->timer_mutex);
  497. dbs_enable++;
  498. /*
  499. * Start the timerschedule work, when this governor
  500. * is used for first time
  501. */
  502. if (dbs_enable == 1) {
  503. unsigned int latency;
  504. /* policy latency is in nS. Convert it to uS first */
  505. latency = policy->cpuinfo.transition_latency / 1000;
  506. if (latency == 0)
  507. latency = 1;
  508.  
  509. rc = sysfs_create_group(cpufreq_global_kobject,
  510. &dbs_attr_group);
  511. if (rc) {
  512. mutex_unlock(&dbs_mutex);
  513. return rc;
  514. }
  515.  
  516. min_sampling_rate = 10000;
  517. dbs_tuners_ins.sampling_rate = 10000;
  518.  
  519. cpufreq_register_notifier(
  520. &dbs_cpufreq_notifier_block,
  521. CPUFREQ_TRANSITION_NOTIFIER);
  522. }
  523. mutex_unlock(&dbs_mutex);
  524.  
  525. dbs_timer_init(this_dbs_info);
  526.  
  527. break;
  528.  
  529. case CPUFREQ_GOV_STOP:
  530. dbs_timer_exit(this_dbs_info);
  531.  
  532. mutex_lock(&dbs_mutex);
  533. dbs_enable--;
  534. mutex_destroy(&this_dbs_info->timer_mutex);
  535.  
  536. /*
  537. * Stop the timerschedule work, when this governor
  538. * is used for first time
  539. */
  540. if (dbs_enable == 0)
  541. cpufreq_unregister_notifier(
  542. &dbs_cpufreq_notifier_block,
  543. CPUFREQ_TRANSITION_NOTIFIER);
  544.  
  545. mutex_unlock(&dbs_mutex);
  546. if (!dbs_enable)
  547. sysfs_remove_group(cpufreq_global_kobject,
  548. &dbs_attr_group);
  549.  
  550. break;
  551.  
  552. case CPUFREQ_GOV_LIMITS:
  553. mutex_lock(&this_dbs_info->timer_mutex);
  554. if (policy->max < this_dbs_info->cur_policy->cur)
  555. __cpufreq_driver_target(
  556. this_dbs_info->cur_policy,
  557. policy->max, CPUFREQ_RELATION_H);
  558. else if (policy->min > this_dbs_info->cur_policy->cur)
  559. __cpufreq_driver_target(
  560. this_dbs_info->cur_policy,
  561. policy->min, CPUFREQ_RELATION_L);
  562. mutex_unlock(&this_dbs_info->timer_mutex);
  563.  
  564. break;
  565. }
  566. return 0;
  567. }
  568.  
  569. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_TEAM-DROID-X
  570. static
  571. #endif
  572. struct cpufreq_governor cpufreq_gov_team-droid-x = {
  573. .name = "team-droid-x",
  574. .governor = cpufreq_governor_dbs,
  575. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  576. .owner = THIS_MODULE,
  577. };
  578.  
  579. static int __init cpufreq_gov_dbs_init(void)
  580. {
  581. return cpufreq_register_governor(&cpufreq_gov_team-droid-x);
  582. }
  583.  
  584. static void __exit cpufreq_gov_dbs_exit(void)
  585. {
  586. cpufreq_unregister_governor(&cpufreq_gov_team-droid-x);
  587. }
  588.  
  589. MODULE_AUTHOR("Harshit-Jain");
  590. MODULE_AUTHOR("Harsh!t Jain <harshitjain6751@gmail.com>");
  591. MODULE_DESCRIPTION("'cpufreq_team-droid-x' - A better governor for quad core devices ;) with love TDX");
  592. MODULE_LICENSE("GPL");
  593.  
  594. fs_initcall(cpufreq_gov_dbs_init);
  595. module_exit(cpufreq_gov_dbs_exit);
Add Comment
Please, Sign In to add comment