Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- INFO: Detail Daemon is enabled
- π RAW ARGS DEBUG: preserve_dc_component_v2=False, use_correct_fft_shift=False, mask_function=corner_average
- π Frequency Separation: process() called - enabled=True, p_type=StableDiffusionProcessingTxt2Img
- π¨ Frequency Separation: txt2img mode detected - will enhance after generation
- π Using custom steps/cfg: False
- π Using generation settings: steps=30, cfg=7
- 100%|ββββββββββ| 30/30 [00:03<00:00, 9.32it/s]
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- π¨ Frequency Separation: Processing batch 0 before ADetailer...
- π Batch contains 1 images, shape: torch.Size([1, 3, 512, 512])
- πΌοΈ Processing image 1/1...
- π§ Using recombination method: frequency_reconstruction
- πΎ Save before denoising: True
- π‘ Preserve DC component: False
- π§ FFT Shift: False
- π― FFT Shift Detail Inspection: False
- π Mask Function: corner_average
- π DEBUG: preserve_dc_component=False, use_fft_shift=False, use_correct_fft_shift=False, mask_function=corner_average
- π§ Processing 1 images with REAL DIFFUSION in latent space
- π Sync Mode: progressive_refinement
- πΌοΈ Frequency Bands: 3
- π’ Band Configuration: low_freq(0.00-0.15, denoise:0.30, steps:30), mid_freq(0.10-0.40, denoise:0.30, steps:30), high_freq(0.35-1.00, denoise:0.30, steps:30)
- π― ==> Processing image 1/1 with REAL DIFFUSION...
- π Step 1: Encoding image to latent space...
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- π Successfully encoded image to latent: torch.Size([1, 8, 64, 64])
- β Encoded to latent shape: torch.Size([1, 8, 64, 64])
- π Original latent stats: mean=-1.668, std=1.691, range=[-11.922, 8.297]
- π Input latent energy: 5.645 (reference for normalization)
- π Step 2: Splitting into frequency bands...
- π Using CORNER AVERAGE distance calculation
- π΅ low_freq: (0, 0.15) -> torch.Size([1, 8, 64, 64])
- π Stats: mean=0.000, std=0.131, max=0.936
- π Using CORNER AVERAGE distance calculation
- π΅ mid_freq: (0.1, 0.4) -> torch.Size([1, 8, 64, 64])
- π Stats: mean=0.000, std=0.182, max=2.516
- π Using CORNER AVERAGE distance calculation
- π΅ high_freq: (0.35, 1) -> torch.Size([1, 8, 64, 64])
- π Stats: mean=-0.834, std=0.940, max=8.008
- β Split into 3 frequency bands
- π₯ Step 3: Running REAL DIFFUSION on each frequency band...
- β οΈ This will take time and show progress bars for each band!
- π Added 3 frequency band diffusion jobs to queue
- ποΈ REAL DIFFUSION processing low_freq band (denoising: 0.3, steps: 30, cfg: 7)
- π Band config: steps=30, cfg=7
- π₯ Starting REAL diffusion on low_freq band...
- β οΈ Error decoding latent to image: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- Traceback (most recent call last):
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions\sd-webui-frequency-separation\scripts\frequency_separation.py", line 1303, in decode_latent_to_image
- decoded = p.sd_model.decode_first_stage(latent_for_decode)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 22, in <lambda>
- setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 36, in __call__
- return self.__orig_func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
- return func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 826, in decode_first_stage
- return self.first_stage_model.decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\lowvram.py", line 74, in first_stage_model_decode_wrap
- return first_stage_model_decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\autoencoder.py", line 89, in decode
- z = self.post_quant_conv(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
- return self._call_impl(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
- return forward_call(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
- return originals.Conv2d_forward(self, input)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
- return self._conv_forward(input, self.weight, self.bias)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
- return F.conv2d(input, weight, bias, self.stride,
- RuntimeError: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- π Created fallback image: (512, 512)
- πΌοΈ Decoded low_freq band to image: (512, 512)
- π§ Copied scripts from base processing: 379 script args
- βοΈ Running diffusion: 30 steps, denoising 0.30, CFG 7, seed -1
- π§ Processing object ready: scripts=True, script_args=379
- π Starting processing.process_images() for low_freq...
- INFO: Detail Daemon is enabled
- π RAW ARGS DEBUG: preserve_dc_component_v2=False, use_correct_fft_shift=False, mask_function=corner_average
- π Frequency Separation: process() called - enabled=True, p_type=StableDiffusionProcessingImg2Img
- π Frequency Separation: Disabled for internal frequency band processing, skipping
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- 100%|ββββββββββ| 10/10 [00:01<00:00, 9.14it/s]
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- β process_images() completed for low_freq
- π Successfully encoded image to latent: torch.Size([1, 8, 64, 64])
- β low_freq diffusion complete! Shape: torch.Size([1, 8, 64, 64])
- β low_freq band REAL diffusion complete
- ποΈ REAL DIFFUSION processing mid_freq band (denoising: 0.3, steps: 30, cfg: 7)
- π Band config: steps=30, cfg=7
- π₯ Starting REAL diffusion on mid_freq band...
- β οΈ Error decoding latent to image: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- Traceback (most recent call last):
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions\sd-webui-frequency-separation\scripts\frequency_separation.py", line 1303, in decode_latent_to_image
- decoded = p.sd_model.decode_first_stage(latent_for_decode)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 22, in <lambda>
- setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 36, in __call__
- return self.__orig_func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
- return func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 826, in decode_first_stage
- return self.first_stage_model.decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\lowvram.py", line 74, in first_stage_model_decode_wrap
- return first_stage_model_decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\autoencoder.py", line 89, in decode
- z = self.post_quant_conv(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
- return self._call_impl(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
- return forward_call(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
- return originals.Conv2d_forward(self, input)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
- return self._conv_forward(input, self.weight, self.bias)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
- return F.conv2d(input, weight, bias, self.stride,
- RuntimeError: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- π Created fallback image: (512, 512)
- πΌοΈ Decoded mid_freq band to image: (512, 512)
- π§ Copied scripts from base processing: 379 script args
- βοΈ Running diffusion: 30 steps, denoising 0.30, CFG 7, seed -1
- π§ Processing object ready: scripts=True, script_args=379
- π Starting processing.process_images() for mid_freq...
- INFO: Detail Daemon is enabled
- π RAW ARGS DEBUG: preserve_dc_component_v2=False, use_correct_fft_shift=False, mask_function=corner_average
- π Frequency Separation: process() called - enabled=True, p_type=StableDiffusionProcessingImg2Img
- π Frequency Separation: Disabled for internal frequency band processing, skipping
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- 100%|ββββββββββ| 10/10 [00:01<00:00, 9.09it/s]
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- β process_images() completed for mid_freq
- π Successfully encoded image to latent: torch.Size([1, 8, 64, 64])
- β mid_freq diffusion complete! Shape: torch.Size([1, 8, 64, 64])
- β mid_freq band REAL diffusion complete
- ποΈ REAL DIFFUSION processing high_freq band (denoising: 0.3, steps: 30, cfg: 7)
- π Band config: steps=30, cfg=7
- π₯ Starting REAL diffusion on high_freq band...
- β οΈ Error decoding latent to image: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- Traceback (most recent call last):
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions\sd-webui-frequency-separation\scripts\frequency_separation.py", line 1303, in decode_latent_to_image
- decoded = p.sd_model.decode_first_stage(latent_for_decode)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 22, in <lambda>
- setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 36, in __call__
- return self.__orig_func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
- return func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 826, in decode_first_stage
- return self.first_stage_model.decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\lowvram.py", line 74, in first_stage_model_decode_wrap
- return first_stage_model_decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\autoencoder.py", line 89, in decode
- z = self.post_quant_conv(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
- return self._call_impl(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
- return forward_call(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
- return originals.Conv2d_forward(self, input)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
- return self._conv_forward(input, self.weight, self.bias)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
- return F.conv2d(input, weight, bias, self.stride,
- RuntimeError: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- π Created fallback image: (512, 512)
- πΌοΈ Decoded high_freq band to image: (512, 512)
- π§ Copied scripts from base processing: 379 script args
- βοΈ Running diffusion: 30 steps, denoising 0.30, CFG 7, seed -1
- π§ Processing object ready: scripts=True, script_args=379
- π Starting processing.process_images() for high_freq...
- INFO: Detail Daemon is enabled
- π RAW ARGS DEBUG: preserve_dc_component_v2=False, use_correct_fft_shift=False, mask_function=corner_average
- π Frequency Separation: process() called - enabled=True, p_type=StableDiffusionProcessingImg2Img
- π Frequency Separation: Disabled for internal frequency band processing, skipping
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- 100%|ββββββββββ| 10/10 [00:01<00:00, 9.27it/s]
- [Tiled VAE]: the input size is tiny and unnecessary to tile.
- β process_images() completed for high_freq
- π Successfully encoded image to latent: torch.Size([1, 8, 64, 64])
- β high_freq diffusion complete! Shape: torch.Size([1, 8, 64, 64])
- β high_freq band REAL diffusion complete
- π All frequency bands processed! 3/3 successful
- π low_freq processed latent: mean=-1.925, std=2.029
- π mid_freq processed latent: mean=-1.951, std=2.055
- π high_freq processed latent: mean=-1.942, std=2.047
- π Average processed latent: mean=-1.939, std=2.044
- π Mean change: -1.668 β -1.939 (diff: -0.271)
- π Std change: 1.691 β 2.044 (diff: 0.352)
- β‘ Step 3.5: Latent space energy normalization...
- π low_freq latent energy: 7.820
- π mid_freq latent energy: 8.031
- π high_freq latent energy: 7.961
- π Total processed latent energy: 23.812
- π Input latent energy (reference): 5.645
- π¨ Step 4: Multi-VAE decoding each frequency band separately...
- πΌοΈ VAE decoding low_freq band...
- β οΈ Error decoding latent to image: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- Traceback (most recent call last):
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions\sd-webui-frequency-separation\scripts\frequency_separation.py", line 1303, in decode_latent_to_image
- decoded = p.sd_model.decode_first_stage(latent_for_decode)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 22, in <lambda>
- setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 36, in __call__
- return self.__orig_func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
- return func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 826, in decode_first_stage
- return self.first_stage_model.decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\lowvram.py", line 74, in first_stage_model_decode_wrap
- return first_stage_model_decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\autoencoder.py", line 89, in decode
- z = self.post_quant_conv(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
- return self._call_impl(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
- return forward_call(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
- return originals.Conv2d_forward(self, input)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
- return self._conv_forward(input, self.weight, self.bias)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
- return F.conv2d(input, weight, bias, self.stride,
- RuntimeError: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- π Created fallback image: (512, 512)
- β low_freq band decoded: (512, 512)
- πΌοΈ VAE decoding mid_freq band...
- β οΈ Error decoding latent to image: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- Traceback (most recent call last):
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions\sd-webui-frequency-separation\scripts\frequency_separation.py", line 1303, in decode_latent_to_image
- decoded = p.sd_model.decode_first_stage(latent_for_decode)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 22, in <lambda>
- setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 36, in __call__
- return self.__orig_func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
- return func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 826, in decode_first_stage
- return self.first_stage_model.decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\lowvram.py", line 74, in first_stage_model_decode_wrap
- return first_stage_model_decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\autoencoder.py", line 89, in decode
- z = self.post_quant_conv(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
- return self._call_impl(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
- return forward_call(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
- return originals.Conv2d_forward(self, input)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
- return self._conv_forward(input, self.weight, self.bias)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
- return F.conv2d(input, weight, bias, self.stride,
- RuntimeError: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- π Created fallback image: (512, 512)
- β mid_freq band decoded: (512, 512)
- πΌοΈ VAE decoding high_freq band...
- β οΈ Error decoding latent to image: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- Traceback (most recent call last):
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions\sd-webui-frequency-separation\scripts\frequency_separation.py", line 1303, in decode_latent_to_image
- decoded = p.sd_model.decode_first_stage(latent_for_decode)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 22, in <lambda>
- setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\sd_hijack_utils.py", line 36, in __call__
- return self.__orig_func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
- return func(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 826, in decode_first_stage
- return self.first_stage_model.decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\modules\lowvram.py", line 74, in first_stage_model_decode_wrap
- return first_stage_model_decode(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\repositories\stable-diffusion-stability-ai\ldm\models\autoencoder.py", line 89, in decode
- z = self.post_quant_conv(z)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
- return self._call_impl(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
- return forward_call(*args, **kwargs)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\extensions-builtin\Lora\networks.py", line 599, in network_Conv2d_forward
- return originals.Conv2d_forward(self, input)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
- return self._conv_forward(input, self.weight, self.bias)
- File "E:\A1111\StabilityMatrixData\Packages\Stable Diffusion WebUI Test RC\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
- return F.conv2d(input, weight, bias, self.stride,
- RuntimeError: Given groups=1, weight of size [4, 4, 1, 1], expected input[1, 8, 64, 64] to have 4 channels, but got 8 channels instead
- π Created fallback image: (512, 512)
- β high_freq band decoded: (512, 512)
- π¨ Starting multi-VAE image space recombination using frequency_reconstruction...
- π low_freq: (512, 512, 3) avg=0.0 std=0.0
- π mid_freq: (512, 512, 3) avg=0.0 std=0.0
- π high_freq: (512, 512, 3) avg=0.0 std=0.0
- π Using FREQUENCY RECONSTRUCTION with energy normalization...
- π΅ Processing low_freq for frequency reconstruction...
- π Using CORNER AVERAGE distance calculation (image space)
- π΅ Processing mid_freq for frequency reconstruction...
- π Using CORNER AVERAGE distance calculation (image space)
- π΅ Processing high_freq for frequency reconstruction...
- π Using CORNER AVERAGE distance calculation (image space)
- π‘ Final brightness (no energy correction): 0.0 (original: 0.0)
- π― Final brightness: 0.0 (target: 0.0)
- π Multi-VAE recombination successful: (512, 512)
- π Image 1/1 frequency processing COMPLETE!
- π ALL FREQUENCY SEPARATION WITH REAL DIFFUSION COMPLETE!
- β¨ Enhanced 1 images through frequency-domain processing
- π― Each image processed through 3 separate diffusion runs
- β Image 1 frequency enhancement complete!
- π Updated original tensor in-place on device: cpu
- π Batch frequency enhancement complete! ADetailer will now process the enhanced images.
- Total progress: 60it [00:10, 5.51it/s]s]
- Ending job task(ibzf4lsl1rl3gtn) (12.14 seconds)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement