Guest User

Untitled

a guest
Apr 19th, 2018
87
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.92 KB | None | 0 0
  1. documentclass[12pt]{article}
  2.  
  3. usepackage[latin1]{inputenc}
  4. usepackage[T1]{fontenc}
  5.  
  6. usepackage[leqno,reqno]{amsmath}
  7. usepackage{amssymb}
  8. usepackage[colorlinks=true,linkcolor=blue,citecolor=blue]{hyperref}
  9.  
  10. usepackage{enumitem}
  11. usepackage{nameref}
  12.  
  13. makeatletter
  14. letorgdescriptionlabeldescriptionlabel
  15. renewcommand*{descriptionlabel}[1]{%
  16. letorglabellabel
  17. letlabel@gobble
  18. phantomsection
  19. edef@currentlabel{#1}%
  20. %edef@currentlabelname{#1}%
  21. letlabelorglabel
  22. orgdescriptionlabel{#1}%
  23. }
  24. makeatother
  25.  
  26. defn3#1{leftvert ! leftvert ! leftvert , #1 , rightvert !
  27. rightvert ! rightvert }
  28.  
  29. begin{document}
  30.  
  31. A function $n3{cdot}:mathcal M_n(mathbb C)longrightarrowmathbb R$ is a emph{matrix norm}, if, for all $A,Binmathcal M_n(mathbb C)$ it satisfies the following five axioms:
  32.  
  33. begin{description}[itemsep=-0.3em]
  34. item[(1)label{nonn}] $n3{A}geq0$ hfill nonnegative
  35. item[(1a)label{pos}] $n3{A}=0 ; Longleftrightarrow ; A=0$ hfill positive
  36. item[(2)label{hom}] $n3{c,A}=|c|n3{A} quad forall cinmathbb C$ hfill homogeneous
  37. item[(3)label{tr}] $n3{A+B}leq n3{A}+n3{B}$ hfill triangle inequality
  38. item[(4)label{sub}] $n3{A,B}leq n3{A}n3{B}$ hfill submultiplicativity
  39. end{description}
  40.  
  41. The first four properties of a matrix norm are identical to the axioms for a verctor norm. A norm on matrices that does not satisfy property eqref{sub} for all $A$ and $B$ is a emph{vector norm on matrices}, sometimes called a emph{generalized matrix norm}. The notions of a matrix seminorm and a generalized matrix seminorm may also be defined via omission of axiom eqref{pos}.
  42.  
  43. The first four properties of a matrix norm are identical to the axioms for a verctor norm. A norm on matrices that does not satisfy property ref{sub} for all $A$ and $B$ is a emph{vector norm on matrices}, sometimes called a emph{generalized matrix norm}. The notions of a matrix seminorm and a generalized matrix seminorm may also be defined via omission of axiom ref{pos}.
  44.  
  45. end{document}
Add Comment
Please, Sign In to add comment