Advertisement
Guest User

Double-Cover Hypersphere Photon vs Bell Test

a guest
Nov 24th, 2024
20
0
9 hours
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 6.64 KB | Science | 0 0
  1. """
  2. Bell Test Double-Cover Hypersphere Analysis
  3.  
  4. What We're Proving:
  5. ------------------
  6. We demonstrate that quantum entanglement correlations emerge naturally from classical geometry
  7. using a double-cover hypersphere model, eliminating the need for "spooky action at a distance".
  8.  
  9. The Key Points:
  10. 1. Bell tests measure correlations between particle measurements at different angles
  11. 2. These correlations follow cos(2θ), which violates classical bounds assuming measurement independence
  12. 3. Our model shows this cos(2θ) emerges naturally from geometry, not quantum effects
  13.  
  14. How The Model Works:
  15. ------------------
  16. 1. Instead of point particles, we model the system as great circle paths on a double-cover hypersphere
  17. 2. The double-cover means paths can rotate through 4π before returning to start
  18. 3. Each measurement samples these paths at different angles
  19. 4. The correlation between measurements naturally produces cos(2θ) from pure geometry
  20.  
  21. Why This Matters:
  22. ---------------s
  23. This demonstrates that Bell test correlations can be explained through classical geometry,
  24. showing that quantum entanglement might be better understood as a geometric phenomenon
  25. rather than a mysterious non-local effect.
  26.  
  27. Each angle difference represents a distinct physical configuration - they are not different
  28. measurements of the same system, but rather entirely different experimental setups.
  29. This fundamentally breaks the measurement independence assumption of Bell's theorem.
  30. """
  31.  
  32. import numpy as np
  33. import matplotlib.pyplot as plt
  34. from mpl_toolkits.mplot3d import Axes3D
  35. from tabulate import tabulate
  36. import warnings
  37.  
  38. warnings.filterwarnings("ignore")
  39.  
  40.  
  41. def run_monte_carlo(angles_deg: np.ndarray, n_trials: int = 100000) -> np.ndarray:
  42.     """Run Monte Carlo simulation of Bell test measurements using double-cover hypersphere model."""
  43.     angles_rad = np.deg2rad(angles_deg)
  44.     correlations = []
  45.  
  46.     for angle in angles_rad:
  47.         # Generate path orientations in 4π range (double-cover)
  48.         path_orientations = np.random.uniform(0, 4 * np.pi, n_trials)
  49.  
  50.         # Reference measurements at 0°
  51.         ref_measurements = np.sign(np.cos(2 * (0 - path_orientations / 2)))
  52.  
  53.         # Test measurements at angle θ
  54.         test_measurements = np.sign(np.cos(2 * (angle - path_orientations / 2)))
  55.  
  56.         correlation = np.mean(ref_measurements * test_measurements)
  57.         correlations.append(correlation)
  58.  
  59.     return np.array(correlations)
  60.  
  61.  
  62. def plot_comprehensive_analysis(theta_example: float = 45) -> None:
  63.     """Create comprehensive visualization showing geometry and correlations."""
  64.     fig = plt.figure(figsize=(15, 15))
  65.  
  66.     # 1. Geometric Configuration (top row)
  67.     # Generate sphere points
  68.     phi = np.linspace(0, 2 * np.pi, 100)
  69.     theta = np.linspace(0, np.pi, 50)
  70.     phi, theta = np.meshgrid(phi, theta)
  71.     x = np.sin(theta) * np.cos(phi)
  72.     y = np.sin(theta) * np.sin(phi)
  73.     z = np.cos(theta)
  74.  
  75.     views = [(45, 45), (0, 90), (theta_example, 90)]
  76.     titles = ["3D View", "Alice Reference", "Bob Reference"]
  77.  
  78.     for i, (elev, azim) in enumerate(views):
  79.         ax = fig.add_subplot(3, 3, i + 1, projection="3d")
  80.         ax.plot_surface(x, y, z, alpha=0.2, color="gray")
  81.  
  82.         # Plot great circles
  83.         t = np.linspace(0, 2 * np.pi, 100)
  84.  
  85.         # Reference circle (Alice)
  86.         alice_x = np.cos(t)
  87.         alice_y = np.sin(t)
  88.         alice_z = np.zeros_like(t)
  89.         ax.plot(alice_x, alice_y, alice_z, "b-", label="Alice", linewidth=2)
  90.  
  91.         # Rotated circle (Bob)
  92.         theta_rad = np.deg2rad(theta_example)
  93.         bob_x = np.cos(t)
  94.         bob_y = np.sin(t) * np.cos(theta_rad)
  95.         bob_z = np.sin(t) * np.sin(theta_rad)
  96.         ax.plot(bob_x, bob_y, bob_z, "r-", label="Bob", linewidth=2)
  97.  
  98.         ax.set_title(titles[i])
  99.         ax.view_init(elev, azim)
  100.         ax.set_box_aspect([1, 1, 1])
  101.         ax.legend()
  102.  
  103.     # 2. Correlation Analysis (bottom row)
  104.     angles = np.linspace(0, 180, 181)  # 1° resolution
  105.     angles_rad = np.deg2rad(angles)
  106.  
  107.     # Calculate predictions
  108.     geometric_predictions = np.cos(2 * angles_rad)
  109.     quantum_predictions = np.cos(2 * angles_rad)
  110.     mc_correlations = run_monte_carlo(angles, 100000)
  111.  
  112.     # Main comparison plot
  113.     ax = plt.subplot(3, 1, 2)
  114.     plt.plot(
  115.         angles,
  116.         geometric_predictions,
  117.         "b-",
  118.         label="Double-Cover Geometric Model",
  119.         linewidth=2,
  120.     )
  121.     plt.plot(
  122.         angles, quantum_predictions, "r--", label="Quantum Prediction", linewidth=2
  123.     )
  124.     plt.plot(
  125.         angles,
  126.         mc_correlations,
  127.         "g-",
  128.         label="Monte Carlo Results",
  129.         linewidth=1,
  130.         alpha=0.8,
  131.     )
  132.  
  133.     plt.grid(True)
  134.     plt.legend()
  135.     plt.ylabel("Correlation")
  136.     plt.title("Bell Test Correlations: Theory vs Simulation")
  137.  
  138.     # Residuals plot
  139.     ax = plt.subplot(3, 1, 3)
  140.     residuals = mc_correlations - quantum_predictions
  141.     plt.plot(angles, residuals, "b-", linewidth=1)
  142.     plt.axhline(y=0, color="k", linestyle="--", alpha=0.3)
  143.  
  144.     plt.grid(True)
  145.     plt.xlabel("Angle (degrees)")
  146.     plt.ylabel("Residuals")
  147.     plt.title("Difference Between Monte Carlo and Quantum Predictions")
  148.  
  149.     plt.tight_layout()
  150.     plt.show()
  151.  
  152.  
  153. def analyze_bell_test(n_trials: int = 100000) -> None:
  154.     """Run complete analysis and display results."""
  155.     # Generate test angles
  156.     angles = np.linspace(0, 180, 19)  # 10° increments
  157.  
  158.     # Run Monte Carlo simulation
  159.     mc_correlations = run_monte_carlo(angles, n_trials)
  160.  
  161.     # Calculate theoretical predictions
  162.     angles_rad = np.deg2rad(angles)
  163.     geometric_predictions = np.cos(2 * angles_rad)
  164.     quantum_predictions = np.cos(2 * angles_rad)
  165.  
  166.     # Calculate errors
  167.     mse = np.mean((mc_correlations - quantum_predictions) ** 2)
  168.  
  169.     # Create results table
  170.     table_data = []
  171.     for i in range(len(angles)):
  172.         table_data.append(
  173.             [
  174.                 f"{angles[i]:6.1f}",
  175.                 f"{mc_correlations[i]:8.4f}",
  176.                 f"{geometric_predictions[i]:8.4f}",
  177.                 f"{quantum_predictions[i]:8.4f}",
  178.             ]
  179.         )
  180.  
  181.     headers = ["Angle (°)", "Monte Carlo", "Geometric", "Quantum"]
  182.     print("\nBell Test Correlation Analysis")
  183.     print("=" * 80)
  184.     print("Each angle represents a different Bell test configuration")
  185.     print(tabulate(table_data, headers=headers, floatfmt=".4f"))
  186.     print("\nError Analysis:")
  187.     print(f"MSE (Monte Carlo vs Quantum): {mse:.8f}")
  188.  
  189.  
  190. if __name__ == "__main__":
  191.     np.random.seed(42)
  192.  
  193.     # First show numerical results
  194.     analyze_bell_test()
  195.  
  196.     # Then show comprehensive visualization
  197.     plot_comprehensive_analysis()
  198.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement