Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- try:
- import joblib
- except ImportError:
- from sklearn.externals import joblib
- from sklearn import datasets
- from sklearn.linear_model import LogisticRegression
- from sklearn.model_selection import train_test_split
- import numpy as np
- import matplotlib.pyplot as plt
- from clearml import Task, Model
- task = Task.init(project_name="examples 3", task_name="task name 5")
- iris = datasets.load_diabetes()
- X = iris.data
- y = iris.target
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=12)
- model = LogisticRegression(max_iter=20) # sklearn LogisticRegression class
- model.fit(X_train, y_train)
- joblib.dump(model, 'model.pkl', compress=True) # it properly saves model locally, and sends to clearml as artifact
- x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
- y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
- h = .02 # step size in the mesh
- xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
- plt.figure(1, figsize=(4, 3))
- plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', cmap=plt.cm.Paired)
- plt.xlabel('Sepal length')
- plt.ylabel('Sepal width')
- plt.xlim(xx.min(), xx.max())
- plt.ylim(yy.min(), yy.max())
- plt.xticks(())
- plt.yticks(())
- plt.show()
- task.close()
Advertisement
Add Comment
Please, Sign In to add comment