Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- UPDATED CSS:
- <style>
- body,div {
- font-family:Verdana,Trebuchet MS,Arial,Tahoma,Helvetica,sans-serif;
- font-size:11pt;
- line-height:1.3em;
- }
- p,ul,ol,li {
- text-align:left;
- font: normal normal 11pt Verdana,Trebuchet MS,Arial,Tahoma,Helvetica,sans-serif;
- }
- ul,ol {
- padding-bottom:0;
- margin-bottom:0;
- padding-left:1em;
- line-height:1.4em;
- }
- li {
- padding-bottom:5px;
- padding-top:5px;
- margin-left:1em;
- line-height:22px
- }
- sup {
- vertical-align:baseline;
- position:relative;
- top:-0.4em;
- line-height:100%;
- }
- br.big {
- display:block;
- content:"";
- margin-top:0.5em;
- line-height:190%;
- vertical-align:top;
- }
- .feedbackpath {
- font-family:Tahoma,Arial Narrow,Arial,Helvetica,Verdana,sans-serif;
- font-size:11pt;
- padding-left:1em;
- display:inline-block;
- }
- </style>
- UPDATED HTML:
- <div style="max-width:41em;">
- <ul style="margin-left:0.2em;padding-left:0.2em">
- <li id="negative" style="margin-top:1em;margin-bottom:0.75em"><b>Negative (stabilizing/attenuating) feedbacks:</b>
- <ol style="margin-top:0.5em">
- <li id="planck">
- <p>Planck Feedback. The most fundamental feedback effect is simply that when the Earth's surface gets warmer, it loses heat faster, thereby reducing the increase in temperature.</p>
- <p><i>“It is like pumping air into a tyre with a puncture: the harder you pump the faster the air escapes.”</i> –<a href="http://archive.is/nUwyk#selection-227.166-227.265">Clive Best</a></p>
- <p>The simplest and easiest to quantify component of that effect is the radiative component,
- called “Planck feedback.” Radiative emissions from a warm body are
- <a href="http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/stefan.html">proportional to</a>
- the 4<sup>th</sup> power of the body's absolute temperature (temperature in Kelvin), according to the Stefan-Boltzmann law:</p>
- <p><span class=feedbackpath><b>E = ε σ T<sup>4</sup></b></span></p>
- <p>where:</p>
- <p><span class=feedbackpath>epsilon <b>ε</b> is emissivity, [0..1] (function of frequency, unless perfect grey-body)<br>
- sigma <b>σ</b> is the Stefan-Boltzmann constant, 5.670374419E-8 W/m<sup>2</sup>K<sup>4</sup><br>
- temperature <b>T</b> is in Kelvin<br>
- <b>E</b> = radiative emission in W/m<sup>2</sup>
- </span></p>
- <p>It is calculated that a uniform global temperature increase of
- 1°C would increase radiant heat loss from the surface of the Earth by about 1.4% (variously estimated to be 3.1 to <nobr>3.7 W/m²,</nobr> or <a href="AR5_Table_9.5_p.818.html#:~:text=Planck_fdbk">3.1 to 3.3 W/m² in the CMIP5 models</a>,
- or <a href="https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf#page=46">3.0 to 3.4 W/m² in AR6 §7.4.2.1</a>
- — it's <a href="Cronin2020_PlanckQJ.pdf">complicated</a>).</p>
- <p><span class=feedbackpath>warmer surface → more rapid radiative heat loss → cooler surface</span></p>
- <p>However, <a href="Koll2018_pnas.1809868115.pdf">Koll & Cronin (2018)</a> report that...</p>
- </li>
- <li>(Another list element)</li>
- </ol>
- <li id="positive" style="margin-top:1em;margin-bottom:0.75em"><b>Positive (amplifying) feedbacks:</b></li>
- </ul>
- </div>
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement