EXTREMEXPLOIT

Maximisation Step

Apr 25th, 2020 (edited)
467
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 0.78 KB | None | 0 0
  1. # Maximisation Step.
  2. X = [x.T for x in list(map(np.matrix, ((-4,0), (2,0), (-2,6))))] # Puntos como columnas.
  3. UpdatedGaussians = [[], []]
  4.  
  5. for k in range(K):
  6.     N1 = sum([R for R in R[k]])
  7.     Pi1 = N1/len(X)
  8.     Mean1 = (1/N1) * sum([R[0][n]*X[n] for n in range(len(X))])
  9.     Cov1 = (1/N1) * sum([R[0][n] * (X[n]-Mean1) * (X[n]-Mean1).T for n in range(len(X))])
  10.  
  11.     N2 = sum([R for R in R[1]])
  12.     Pi2 = N2/len(X)
  13.     Mean2 = (1/N2) * sum([R[1][n]*X[n] for n in range(len(X))])
  14.     Cov2 = (1/N2) * sum([R[1][n] * (X[n]-Mean2) * (X[n]-Mean2).T for n in range(len(X))])
  15.  
  16.     ArrayMean1 = (np.squeeze(np.asarray(Mean1)))
  17.     ArrayMean2 = (np.squeeze(np.asarray(Mean2)))
  18.  
  19. Carla_Cov2 = np.matrix([[3.94017862, -5.91026779], [-5.91026779, 8.8654018]])
  20.  
  21. print(Cov1)
  22.  
  23. print(Cov2)
Add Comment
Please, Sign In to add comment