Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Maximisation Step.
- X = [x.T for x in list(map(np.matrix, ((-4,0), (2,0), (-2,6))))] # Puntos como columnas.
- UpdatedGaussians = [[], []]
- for k in range(K):
- N1 = sum([R for R in R[k]])
- Pi1 = N1/len(X)
- Mean1 = (1/N1) * sum([R[0][n]*X[n] for n in range(len(X))])
- Cov1 = (1/N1) * sum([R[0][n] * (X[n]-Mean1) * (X[n]-Mean1).T for n in range(len(X))])
- N2 = sum([R for R in R[1]])
- Pi2 = N2/len(X)
- Mean2 = (1/N2) * sum([R[1][n]*X[n] for n in range(len(X))])
- Cov2 = (1/N2) * sum([R[1][n] * (X[n]-Mean2) * (X[n]-Mean2).T for n in range(len(X))])
- ArrayMean1 = (np.squeeze(np.asarray(Mean1)))
- ArrayMean2 = (np.squeeze(np.asarray(Mean2)))
- Carla_Cov2 = np.matrix([[3.94017862, -5.91026779], [-5.91026779, 8.8654018]])
- print(Cov1)
- print(Cov2)
Add Comment
Please, Sign In to add comment