Advertisement
FrequentPaster

iocinico

Jun 10th, 2019
145
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 7.34 KB | None | 0 0
  1. *proof of iocinico
  2.  
  3. 50::df-in |- ( ( A (,] B ) i^i ( B [,) C ) )
  4. = { x | ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) }
  5. *show x <_ B
  6. 56::elioc1 |- ( ( A e. RR* /\ B e. RR* )
  7. -> ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) ) )
  8. 57:56:3adant3 |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  9. -> ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) ) )
  10. 58::bi1 |- ( ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) )
  11. -> ( x e. ( A (,] B ) -> ( x e. RR* /\ A < x /\ x <_ B ) ) )
  12. 59::3simpb |- ( ( x e. RR* /\ A < x /\ x <_ B )
  13. -> ( x e. RR* /\ x <_ B ) )
  14. 60:58,59:syl6 |- ( ( x e. ( A (,] B ) <-> ( x e. RR* /\ A < x /\ x <_ B ) )
  15. -> ( x e. ( A (,] B ) -> ( x e. RR* /\ x <_ B ) ) )
  16. 61:57,60:syl |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  17. -> ( x e. ( A (,] B ) -> ( x e. RR* /\ x <_ B ) ) )
  18. * show B <_ x
  19. 62::elico1 |- ( ( B e. RR* /\ C e. RR* )
  20. -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) )
  21. 63:62:3adant1 |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  22. -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) )
  23. 64::bi1 |- ( ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) )
  24. -> ( x e. ( B [,) C ) -> ( x e. RR* /\ B <_ x /\ x < C ) ) )
  25. 65::3simpa |- ( ( x e. RR* /\ B <_ x /\ x < C )
  26. -> ( x e. RR* /\ B <_ x ) )
  27. 66:64,65:syl6 |- ( ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) )
  28. -> ( x e. ( B [,) C ) -> ( x e. RR* /\ B <_ x ) ) )
  29. 67:63,66:syl |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  30. -> ( x e. ( B [,) C ) -> ( x e. RR* /\ B <_ x ) ) )
  31. *combine these results
  32. 68:61,67:anim12d |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  33. -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) )
  34. -> ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) ) )
  35. 69::simpll |- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> x e. RR* )
  36. 70::simprr |- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> B <_ x )
  37. 71::simplr |- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) ) -> x <_ B )
  38. 72:69,70,71:3jca |- ( ( ( x e. RR* /\ x <_ B ) /\ ( x e. RR* /\ B <_ x ) )
  39. -> ( x e. RR* /\ B <_ x /\ x <_ B ) )
  40. 73:68,72:syl6 |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  41. -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) )
  42. -> ( x e. RR* /\ B <_ x /\ x <_ B ) ) )
  43.  
  44. *show one way subset
  45. 74::elicc1 |- ( ( B e. RR* /\ B e. RR* )
  46. -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) )
  47. 75:74:anidms |- ( B e. RR*
  48. -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) )
  49. 76:75:3ad2ant2 |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  50. -> ( x e. ( B [,] B ) <-> ( x e. RR* /\ B <_ x /\ x <_ B ) ) )
  51. *
  52. 77:73,76:sylibrd |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  53. -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) )
  54. -> x e. ( B [,] B ) ) )
  55. 78::id |- ( ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) )
  56. -> x e. ( B [,] B ) )
  57. -> ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) -> x e. ( B [,] B ) ) )
  58. 79:78:ss2abdv |- ( ( ( x e. ( A (,] B ) /\ x e. ( B [,) C ) )
  59. -> x e. ( B [,] B ) )
  60. -> { x | ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) }
  61. C_ { x | x e. ( B [,] B ) } )
  62. 80:77,79:syl |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  63. -> { x | ( x e. ( A (,] B ) /\ x e. ( B [,) C ) ) }
  64. C_ { x | x e. ( B [,] B ) } )
  65. 81:50,80:syl5eqss |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  66. -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ { x | x e. ( B [,] B ) } )
  67. 82::abid2 |- { x | x e. ( B [,] B ) } = ( B [,] B )
  68. 83:81,82:syl6sseq |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  69. -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ ( B [,] B ) )
  70. 84:83:adantr |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  71. -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ ( B [,] B ) )
  72. 85::iccid |- ( B e. RR* -> ( B [,] B ) = { B } )
  73. 86:85:3ad2ant2 |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  74. -> ( B [,] B ) = { B } )
  75. 87:86:adantr |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  76. -> ( B [,] B ) = { B } )
  77. 88:84,87:sseqtrd |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  78. -> ( ( A (,] B ) i^i ( B [,) C ) ) C_ { B } )
  79. *
  80. *show B is in ( A (,] B)
  81. 89::simpl2 |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. RR* )
  82. 90::simprl |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> A < B )
  83. 91::xrleid |- ( B e. RR* -> B <_ B )
  84. 92:89,91:syl |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B <_ B )
  85. 93:89,90,92:3jca |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  86. -> ( B e. RR* /\ A < B /\ B <_ B ) )
  87. 94::elioc1 |- ( ( A e. RR* /\ B e. RR* )
  88. -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) )
  89. 95:94:3adant3 |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  90. -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) )
  91. 96:95:adantr |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  92. -> ( B e. ( A (,] B ) <-> ( B e. RR* /\ A < B /\ B <_ B ) ) )
  93. 97:93,96:mpbird |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  94. -> B e. ( A (,] B ) )
  95. *show B is in ( B [,) C )
  96. d1::simprr |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B < C )
  97. 200:89,92,d1:3jca |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  98. -> ( B e. RR* /\ B <_ B /\ B < C ) )
  99. 210::elico1 |- ( ( B e. RR* /\ C e. RR* )
  100. -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) )
  101. 220:210:3adant1 |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* )
  102. -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) )
  103. 230:220:adantr |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  104. -> ( B e. ( B [,) C ) <-> ( B e. RR* /\ B <_ B /\ B < C ) ) )
  105. 240:200,230:mpbird |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  106. -> B e. ( B [,) C ) )
  107. *combine results
  108. 250:97,240:jca |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  109. -> ( B e. ( A (,] B ) /\ B e. ( B [,) C ) ) )
  110. 260:97,240:bnj1153 |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  111. -> B e. ( ( A (,] B ) i^i ( B [,) C ) ) )
  112. 270:260:snssd |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  113. -> { B } C_ ( ( A (,] B ) i^i ( B [,) C ) ) )
  114. *
  115. qed:88,270:eqssd |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) )
  116. -> ( ( A (,] B ) i^i ( B [,) C ) ) = { B } )
  117.  
  118. $d A x
  119. $d B x
  120. $d C x
  121. $= ( vx cxr wcel w3a clt wbr wa co wss cab wi cle wb syl6 syl 3jca
  122. adantr cioc cico cin cicc cv df-in elioc1 3adant3 3simpb elico1
  123. csn 3adant1 3simpa anim12d simpll simprr simplr elicc1 3ad2ant2
  124. bi1 anidms sylibrd ss2abdv syl5eqss abid2 syl6sseq wceq sseqtrd
  125. id iccid simpl2 simprl xrleid mpbird bnj1153 snssd eqssd ) AEFZ
  126. BEFZCEFZGZABHIZBCHIZJZJZABUAKZBCUBKZUCZBUKZWEWHBBUDKZWIWAWHWJLW
  127. DWAWHDUEZWJFZDMZWJWAWHWKWFFZWKWGFZJZDMZWMDWFWGUFWAWPWLNZWQWMLWA
  128. WPWKEFZBWKOIZWKBOIZGZWLWAWPWSXAJZWSWTJZJZXBWAWNXCWOXDWAWNWSAWKH
  129. IZXAGZPZWNXCNVRVSXHVTABWKUGUHXHWNXGXCWNXGUTWSXFXAUIQRWAWOWSWTWK
  130. CHIZGZPZWOXDNVSVTXKVRBCWKUJULXKWOXJXDWOXJUTWSWTXIUMQRUNXEWSWTXA
  131. WSXAXDUOXCWSWTUPWSXAXDUQSQVSVRWLXBPZVTVSXLBBWKURVAUSVBWRWPWLDWR
  132. VIVCRVDDWJVEVFTWAWJWIVGZWDVSVRXMVTBVJUSTVHWEBWHWEWFWGBWEBWFFZVS
  133. WBBBOIZGZWEVSWBXOVRVSVTWDVKZWAWBWCVLWEVSXOXQBVMRZSWAXNXPPZWDVRV
  134. SXSVTABBUGUHTVNWEBWGFZVSXOWCGZWEVSXOWCXQXRWAWBWCUPSWAXTYAPZWDVS
  135. VTYBVRBCBUJULTVNVOVPVQ $.
  136. $)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement