• API
• FAQ
• Tools
• Archive
SHARE
TWEET

# Untitled

a guest Dec 14th, 2019 69 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
1. import numpy as np
2. import matplotlib.pyplot as plt
3. import math
4.
5. T = 100
6. thresholds = []
7. probabilities = np.linspace(0,1,100)
8.
9. for p in probabilities:
10.     for k in range(0, T+1):
11.         sum = 0
12.         for i in range(0, k + 1):
13.             sum += (math.factorial(T) / (math.factorial(i) * math.factorial(T - i))) * p ** (i) * (1 - p) ** (T - i)
14.         if sum >= 0.01:
15.             thresholds.append(k)
16.             break
17.
18. plt.plot(probabilities,thresholds, label='T = ' + str(T))
19. plt.legend()
20. plt.ylabel('Threshold')
21. plt.xlabel('Probability')
22. plt.show()
23.
24. p = 0.5
25. thresholds = []
26. read_count  = np.linspace(0, 500, 100)
28.     for k in range(0, int(T+1)):
29.         sum = 0
30.         for i in range(0, k + 1):
31.             sum += (math.factorial(int(T)) / (math.factorial(i) * math.factorial(int(T) - i))) * p ** (i) * (1 - p) ** (int(T) - i)
32.         if sum >= 0.01:
33.             thresholds.append(k)
34.             break
35.
36. plt.plot(read_count,thresholds, label='p = ' + str(p))
37. plt.legend()
38. plt.ylabel('Threshold')