Advertisement
canbolat

deit ouput

Dec 19th, 2024
32
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.10 KB | Source Code | 0 0
  1. Cost at epoch 0 is 4.611058227040551
  2. Cost at epoch 1 is 0.9889081553979353
  3. test set accuracy
  4. Checking accuracy
  5. scores: tensor([[ 33.9686, 33.2787, -31.1509, ..., -25.5279, -36.7728, -24.9331],
  6. [ 33.9695, 33.2792, -31.1509, ..., -25.5264, -36.7719, -24.9356],
  7. [ 33.9690, 33.2784, -31.1496, ..., -25.5270, -36.7717, -24.9326],
  8. ...,
  9. [ 33.9692, 33.2780, -31.1487, ..., -25.5267, -36.7713, -24.9314],
  10. [ 33.9654, 33.2793, -31.1575, ..., -25.5372, -36.7818, -24.9307],
  11. [ 33.9687, 33.2778, -31.1490, ..., -25.5278, -36.7719, -24.9300]],
  12. device='cuda:0')
  13. predictions: tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  14. 0, 0, 0, 0, 0, 0, 0, 0], device='cuda:0')
  15. y: tensor([1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,
  16. 1, 1, 0, 1, 0, 1, 1, 1], device='cuda:0')
  17.  
  18. ### many more prints later
  19. predictions: tensor([0, 0, 0, 0, 0, 0], device='cuda:0')
  20. y: tensor([0, 1, 1, 0, 1, 1], device='cuda:0')
  21. Got 80 / 198 with accuracy 40.40
  22. Precision: 0.1632
  23. Recall: 0.4040
  24. F1-Score: 0.2325
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement