• API
• FAQ
• Tools
• Archive
daily pastebin goal
64%
SHARE
TWEET

# Untitled

a guest Jan 18th, 2019 57 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
1.
2. ### STAKE & NUMBER_OF_BETS ###
3. stake_1 = 0.1
4. stake_2 = 0.2
5. stake_3 = 0.3
6. stake_4 = 0.4
7. stake_5 = 0.5
8.
9. ### Please uncomment wanted amount of bets:
10. number_of_bets = 100
11. #number_of_bets = 250
12. #number_of_bets = 500
13. #number_of_bets = 1000
14. #number_of_bets = 2500
15.
16.
17. ### Please uncomment wanted value for interval on x axis:
18. inter = 17 #for number_of_bets == 100
19. #inter = 23; #for number_of_bets = 250
20. #inter = 34; #for number_of_bets == 500
21. #inter = 50; #for number_of_bets == 1000
22. #inter = 100; #for number_of_bets == 2500
23.
24.
25. base = 100 # any value
26. p = 0.6 # probability == 60%
27. probability = dbinom(0:number_of_bets,number_of_bets, p)
28. s = (0:number_of_bets)
29.
30. ### Please feel free to change stake percent
31. final_bankroll_1 = base*(1+stake_1)^s*(1-stake_1)^(number_of_bets-s) #calculation for final_bankroll_1 for stake == 10%
32. final_bankroll_2 = base*(1+stake_2)^s*(1-stake_2)^(number_of_bets-s) #calculation for final_bankroll_2 for stake == 20%
33. final_bankroll_3 = base*(1+stake_3)^s*(1-stake_3)^(number_of_bets-s) #calculation for final_bankroll_3 for stake == 30%
34. final_bankroll_4 = base*(1+stake_4)^s*(1-stake_4)^(number_of_bets-s) #calculation for final_bankroll_4 for stake == 40%
35. final_bankroll_5 = base*(1+stake_5)^s*(1-stake_5)^(number_of_bets-s) #calculation for final_bankroll_5 for stake == 50%
36.
37. ### Please uncomment if you want to see data.frame of final_bankroll's and probability
38. #print (data.frame(final_bankroll_1, probability)) #printing the aktual values for final_bankroll_1
39. #print (data.frame(final_bankroll_2, probability)) #printing the aktual values for final_bankroll_2
40. #print (data.frame(final_bankroll_3, probability)) #printing the aktual values for final_bankroll_3
41. #print (data.frame(final_bankroll_4, probability)) #printing the aktual values for final_bankroll_4
42. #print (data.frame(final_bankroll_5, probability)) #printing the aktual values for final_bankroll_5
43.
44.
45. ### visualization of both bankrolls using log() function
46. plot(log(final_bankroll_1), probability, type="h",  xlim = c(0, inter))
47. par(new = TRUE)
48. #plot(log(final_bankroll_2), probability, type="h", col = "red", xlim = c(0, inter))
49. #plot(log(final_bankroll_3), probability, type="h", col = "red", xlim = c(0, inter))
50. #plot(log(final_bankroll_4), probability, type="h", col = "red", xlim = c(0, inter))
51. plot(log(final_bankroll_5), probability, type="h", col = "red", xlim = c(0, inter))
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy.
Pastebin PRO 'WINTER SPECIAL'!
Get 40% OFF Pastebin PRO accounts!

Top