daily pastebin goal
43%
SHARE
TWEET

Untitled

a guest Sep 12th, 2018 75 Never
Upgrade to PRO!
ENDING IN00days00hours00mins00secs
  1. library(DeclareDesign)
  2. proportion_shy <- .06
  3.  
  4. population <- declare_population(
  5.   N = 5000,
  6.   # true trump vote (unobservable)
  7.   truthful_trump_vote = draw_binary(.45, N),
  8.  
  9.   # shy voter (unobservable)  
  10.   shy = draw_binary(proportion_shy, N),
  11.  
  12.   # Direct question response (1 if Trump supporter and not shy, 0 otherwise)
  13.   Y_direct = as.numeric(truthful_trump_vote == 1 & shy == 0),
  14.  
  15.   # Nonsensitive list experiment items
  16.   raise_minimum_wage = draw_binary(.8, N),
  17.   repeal_obamacare = draw_binary(.6, N),
  18.   ban_assault_weapons = draw_binary(.5, N)
  19. )
  20.  
  21. potential_outcomes <- declare_potential_outcomes(
  22.   Y_list_Z_0 = raise_minimum_wage + repeal_obamacare + ban_assault_weapons,
  23.   Y_list_Z_1 = Y_list_Z_0 + truthful_trump_vote
  24. )
  25.  
  26. # Inquiry -----------------------------------------------------------------
  27. estimand <- declare_estimand(
  28.   proportion_truthful_trump_vote = mean(truthful_trump_vote))
  29.  
  30. # Data Strategy -----------------------------------------------------------
  31. sampling <- declare_sampling(n = 500)
  32. assignment <- declare_assignment(prob = .5)
  33.  
  34. # Answer Strategy ---------------------------------------------------------
  35. estimator_direct <- declare_estimator(
  36.   Y_direct ~ 1,
  37.   model = lm_robust,
  38.   term = "(Intercept)",
  39.   estimand = estimand,
  40.   label = "direct"
  41. )
  42.  
  43. estimator_list <- declare_estimator(Y_list ~ Z,
  44.                                     model = difference_in_means,
  45.                                     estimand = estimand,
  46.                                     label = "list")
  47.  
  48. # Design ------------------------------------------------------------------
  49. design <-
  50.   population +
  51.   potential_outcomes +
  52.   sampling +
  53.   estimand +
  54.   assignment +
  55.   declare_reveal(outcome_variables = Y_list) +
  56.   estimator_direct +
  57.   estimator_list
  58.  
  59. draw_data(design)
  60.  
  61. diagnosis <- diagnose_design(design, sims = 500, bootstrap_sims = FALSE)
  62. diagnosis
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top