Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- library(e1071)
- library(MLmetrics)
- library(ROCR)
- data = read.csv('../bayes.csv')
- ytest = data[,1]
- pred_m1 = data[,2]
- pred_m2 = data[,3]
- # Threshold 0.5
- pred_m1[pred_m1 >= 0.5] = 1
- pred_m1[pred_m1 < 0.5] = 0
- m1 = prediction(pred_m1, ytest)
- ROCcurve <- performance(m1, "tpr", "fpr")
- plot(ROCcurve, col = "blue")
- abline(0,1, col = "grey")
- performance(m1, "auc")
- pred_m2 = data[,3]
- pred_m2[pred_m2 < 0.5] = 0
- pred_m2[pred_m2 >= 0.5] = 1
- ConfusionMatrix(pred_m2, ytest)
- m2 = prediction(pred_m2, ytest)
- # Define positive class when calling Rec/Prec/F1
- Recall(pred_m2, ytest, '1')
- Precision(pred_m2, ytest, '1')
- F1_Score(pred_m2, ytest, '1')
- ROCcurve2 <- performance(m2, "tpr", "fpr")
- plot(ROCcurve2, col = "red")
- # Get the AUC
- performance(m2, "auc")
Advertisement
Add Comment
Please, Sign In to add comment