Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- RemoteTraceback Traceback (most recent call last)
- RemoteTraceback:
- """
- Traceback (most recent call last):
- File "C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 350, in __call__
- return self.func(*args, **kwargs)
- File "C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in __call__
- return [func(*args, **kwargs) for func, args, kwargs in self.items]
- File "C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in <listcomp>
- return [func(*args, **kwargs) for func, args, kwargs in self.items]
- File "C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py", line 444, in _fit_and_score
- estimator.set_params(**parameters)
- File "C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\base.py", line 274, in set_params
- (key, self))
- ValueError: Invalid parameter c for estimator SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
- decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
- max_iter=-1, probability=False, random_state=None, shrinking=True,
- tol=0.001, verbose=False). Check the list of available parameters with `estimator.get_params().keys()`.
- During handling of the above exception, another exception occurred:
- Traceback (most recent call last):
- File "C:\Users\Jason\Anaconda3\lib\multiprocessing\pool.py", line 119, in worker
- result = (True, func(*args, **kwds))
- File "C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 359, in __call__
- raise TransportableException(text, e_type)
- sklearn.externals.joblib.my_exceptions.TransportableException: TransportableException
- ___________________________________________________________________________
- ValueError Mon Jun 25 19:45:44 2018
- PID: 5588 Python 3.6.5: C:\Users\Jason\Anaconda3\python.exe
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self=<sklearn.externals.joblib.parallel.BatchedCalls object>)
- 126 def __init__(self, iterator_slice):
- 127 self.items = list(iterator_slice)
- 128 self._size = len(self.items)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- self.items = [(<function _fit_and_score>, (SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), {'score': make_scorer(accuracy_score)}, memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), array([ 0, 1, 2, ..., 58765, 67140, 502152]), 0, {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}), {'error_score': 'raise', 'fit_params': {}, 'return_n_test_samples': True, 'return_parameters': False, 'return_times': True, 'return_train_score': 'warn'})]
- 132
- 133 def __len__(self):
- 134 return self._size
- 135
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0=<list_iterator object>)
- 126 def __init__(self, iterator_slice):
- 127 self.items = list(iterator_slice)
- 128 self._size = len(self.items)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- func = <function _fit_and_score>
- args = (SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), {'score': make_scorer(accuracy_score)}, memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), array([ 0, 1, 2, ..., 58765, 67140, 502152]), 0, {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'})
- kwargs = {'error_score': 'raise', 'fit_params': {}, 'return_n_test_samples': True, 'return_parameters': False, 'return_times': True, 'return_train_score': 'warn'}
- 132
- 133 def __len__(self):
- 134 return self._size
- 135
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator=SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), X=array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), y=memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), scorer={'score': make_scorer(accuracy_score)}, train=memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), test=array([ 0, 1, 2, ..., 58765, 67140, 502152]), verbose=0, parameters={'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}, fit_params={}, return_train_score='warn', return_parameters=False, return_n_test_samples=True, return_times=True, error_score='raise')
- 439 for k, v in fit_params.items()])
- 440
- 441 test_scores = {}
- 442 train_scores = {}
- 443 if parameters is not None:
- --> 444 estimator.set_params(**parameters)
- estimator.set_params = <bound method BaseEstimator.set_params of SVC(C=...one, shrinking=True,
- tol=0.001, verbose=False)>
- parameters = {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}
- 445
- 446 start_time = time.time()
- 447
- 448 X_train, y_train = _safe_split(estimator, X, y, train)
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\base.py in set_params(self=SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), **params={'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'})
- 269 key, delim, sub_key = key.partition('__')
- 270 if key not in valid_params:
- 271 raise ValueError('Invalid parameter %s for estimator %s. '
- 272 'Check the list of available parameters '
- 273 'with `estimator.get_params().keys()`.' %
- --> 274 (key, self))
- key = 'c'
- self = SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False)
- 275
- 276 if delim:
- 277 nested_params[key][sub_key] = value
- 278 else:
- ValueError: Invalid parameter c for estimator SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
- decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
- max_iter=-1, probability=False, random_state=None, shrinking=True,
- tol=0.001, verbose=False). Check the list of available parameters with `estimator.get_params().keys()`.
- ___________________________________________________________________________
- """
- The above exception was the direct cause of the following exception:
- TransportableException Traceback (most recent call last)
- ~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in retrieve(self)
- 698 if getattr(self._backend, 'supports_timeout', False):
- --> 699 self._output.extend(job.get(timeout=self.timeout))
- 700 else:
- ~\Anaconda3\lib\multiprocessing\pool.py in get(self, timeout)
- 643 else:
- --> 644 raise self._value
- 645
- TransportableException: TransportableException
- ___________________________________________________________________________
- ValueError Mon Jun 25 19:45:44 2018
- PID: 5588 Python 3.6.5: C:\Users\Jason\Anaconda3\python.exe
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self=<sklearn.externals.joblib.parallel.BatchedCalls object>)
- 126 def __init__(self, iterator_slice):
- 127 self.items = list(iterator_slice)
- 128 self._size = len(self.items)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- self.items = [(<function _fit_and_score>, (SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), {'score': make_scorer(accuracy_score)}, memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), array([ 0, 1, 2, ..., 58765, 67140, 502152]), 0, {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}), {'error_score': 'raise', 'fit_params': {}, 'return_n_test_samples': True, 'return_parameters': False, 'return_times': True, 'return_train_score': 'warn'})]
- 132
- 133 def __len__(self):
- 134 return self._size
- 135
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0=<list_iterator object>)
- 126 def __init__(self, iterator_slice):
- 127 self.items = list(iterator_slice)
- 128 self._size = len(self.items)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- func = <function _fit_and_score>
- args = (SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), {'score': make_scorer(accuracy_score)}, memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), array([ 0, 1, 2, ..., 58765, 67140, 502152]), 0, {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'})
- kwargs = {'error_score': 'raise', 'fit_params': {}, 'return_n_test_samples': True, 'return_parameters': False, 'return_times': True, 'return_train_score': 'warn'}
- 132
- 133 def __len__(self):
- 134 return self._size
- 135
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator=SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), X=array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), y=memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), scorer={'score': make_scorer(accuracy_score)}, train=memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), test=array([ 0, 1, 2, ..., 58765, 67140, 502152]), verbose=0, parameters={'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}, fit_params={}, return_train_score='warn', return_parameters=False, return_n_test_samples=True, return_times=True, error_score='raise')
- 439 for k, v in fit_params.items()])
- 440
- 441 test_scores = {}
- 442 train_scores = {}
- 443 if parameters is not None:
- --> 444 estimator.set_params(**parameters)
- estimator.set_params = <bound method BaseEstimator.set_params of SVC(C=...one, shrinking=True,
- tol=0.001, verbose=False)>
- parameters = {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}
- 445
- 446 start_time = time.time()
- 447
- 448 X_train, y_train = _safe_split(estimator, X, y, train)
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\base.py in set_params(self=SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), **params={'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'})
- 269 key, delim, sub_key = key.partition('__')
- 270 if key not in valid_params:
- 271 raise ValueError('Invalid parameter %s for estimator %s. '
- 272 'Check the list of available parameters '
- 273 'with `estimator.get_params().keys()`.' %
- --> 274 (key, self))
- key = 'c'
- self = SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False)
- 275
- 276 if delim:
- 277 nested_params[key][sub_key] = value
- 278 else:
- ValueError: Invalid parameter c for estimator SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
- decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
- max_iter=-1, probability=False, random_state=None, shrinking=True,
- tol=0.001, verbose=False). Check the list of available parameters with `estimator.get_params().keys()`.
- ___________________________________________________________________________
- During handling of the above exception, another exception occurred:
- JoblibValueError Traceback (most recent call last)
- <ipython-input-39-bf87e95432e2> in <module>()
- 32 scoring='accuracy', cv=10, n_jobs=-1,
- 33 random_state=0)
- ---> 34 randomcv.fit(x_tu, y_tu)
- ~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
- 637 error_score=self.error_score)
- 638 for parameters, (train, test) in product(candidate_params,
- --> 639 cv.split(X, y, groups)))
- 640
- 641 # if one choose to see train score, "out" will contain train score info
- ~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
- 787 # consumption.
- 788 self._iterating = False
- --> 789 self.retrieve()
- 790 # Make sure that we get a last message telling us we are done
- 791 elapsed_time = time.time() - self._start_time
- ~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in retrieve(self)
- 738 exception = exception_type(report)
- 739
- --> 740 raise exception
- 741
- 742 def __call__(self, iterable):
- JoblibValueError: JoblibValueError
- ___________________________________________________________________________
- Multiprocessing exception:
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\runpy.py in _run_module_as_main(mod_name='ipykernel_launcher', alter_argv=1)
- 188 sys.exit(msg)
- 189 main_globals = sys.modules["__main__"].__dict__
- 190 if alter_argv:
- 191 sys.argv[0] = mod_spec.origin
- 192 return _run_code(code, main_globals, None,
- --> 193 "__main__", mod_spec)
- mod_spec = ModuleSpec(name='ipykernel_launcher', loader=<_f...nda3\\lib\\site-packages\\ipykernel_launcher.py')
- 194
- 195 def run_module(mod_name, init_globals=None,
- 196 run_name=None, alter_sys=False):
- 197 """Execute a module's code without importing it
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\runpy.py in _run_code(code=<code object <module> at 0x00000270451DCD20, fil...lib\site-packages\ipykernel_launcher.py", line 5>, run_globals={'__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, '__cached__': r'C:\Users\Jason\Anaconda3\lib\site-packages\__pycache__\ipykernel_launcher.cpython-36.pyc', '__doc__': 'Entry point for launching an IPython kernel.\n\nTh...orts until\nafter removing the cwd from sys.path.\n', '__file__': r'C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel_launcher.py', '__loader__': <_frozen_importlib_external.SourceFileLoader object>, '__name__': '__main__', '__package__': '', '__spec__': ModuleSpec(name='ipykernel_launcher', loader=<_f...nda3\\lib\\site-packages\\ipykernel_launcher.py'), 'app': <module 'ipykernel.kernelapp' from 'C:\\Users\\J...a3\\lib\\site-packages\\ipykernel\\kernelapp.py'>, ...}, init_globals=None, mod_name='__main__', mod_spec=ModuleSpec(name='ipykernel_launcher', loader=<_f...nda3\\lib\\site-packages\\ipykernel_launcher.py'), pkg_name='', script_name=None)
- 80 __cached__ = cached,
- 81 __doc__ = None,
- 82 __loader__ = loader,
- 83 __package__ = pkg_name,
- 84 __spec__ = mod_spec)
- ---> 85 exec(code, run_globals)
- code = <code object <module> at 0x00000270451DCD20, fil...lib\site-packages\ipykernel_launcher.py", line 5>
- run_globals = {'__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, '__cached__': r'C:\Users\Jason\Anaconda3\lib\site-packages\__pycache__\ipykernel_launcher.cpython-36.pyc', '__doc__': 'Entry point for launching an IPython kernel.\n\nTh...orts until\nafter removing the cwd from sys.path.\n', '__file__': r'C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel_launcher.py', '__loader__': <_frozen_importlib_external.SourceFileLoader object>, '__name__': '__main__', '__package__': '', '__spec__': ModuleSpec(name='ipykernel_launcher', loader=<_f...nda3\\lib\\site-packages\\ipykernel_launcher.py'), 'app': <module 'ipykernel.kernelapp' from 'C:\\Users\\J...a3\\lib\\site-packages\\ipykernel\\kernelapp.py'>, ...}
- 86 return run_globals
- 87
- 88 def _run_module_code(code, init_globals=None,
- 89 mod_name=None, mod_spec=None,
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel_launcher.py in <module>()
- 11 # This is added back by InteractiveShellApp.init_path()
- 12 if sys.path[0] == '':
- 13 del sys.path[0]
- 14
- 15 from ipykernel import kernelapp as app
- ---> 16 app.launch_new_instance()
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\traitlets\config\application.py in launch_instance(cls=<class 'ipykernel.kernelapp.IPKernelApp'>, argv=None, **kwargs={})
- 653
- 654 If a global instance already exists, this reinitializes and starts it
- 655 """
- 656 app = cls.instance(**kwargs)
- 657 app.initialize(argv)
- --> 658 app.start()
- app.start = <bound method IPKernelApp.start of <ipykernel.kernelapp.IPKernelApp object>>
- 659
- 660 #-----------------------------------------------------------------------------
- 661 # utility functions, for convenience
- 662 #-----------------------------------------------------------------------------
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel\kernelapp.py in start(self=<ipykernel.kernelapp.IPKernelApp object>)
- 481 if self.poller is not None:
- 482 self.poller.start()
- 483 self.kernel.start()
- 484 self.io_loop = ioloop.IOLoop.current()
- 485 try:
- --> 486 self.io_loop.start()
- self.io_loop.start = <bound method BaseAsyncIOLoop.start of <tornado.platform.asyncio.AsyncIOMainLoop object>>
- 487 except KeyboardInterrupt:
- 488 pass
- 489
- 490 launch_new_instance = IPKernelApp.launch_instance
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\tornado\platform\asyncio.py in start(self=<tornado.platform.asyncio.AsyncIOMainLoop object>)
- 122 except (RuntimeError, AssertionError):
- 123 old_loop = None
- 124 try:
- 125 self._setup_logging()
- 126 asyncio.set_event_loop(self.asyncio_loop)
- --> 127 self.asyncio_loop.run_forever()
- self.asyncio_loop.run_forever = <bound method BaseEventLoop.run_forever of <_Win...EventLoop running=True closed=False debug=False>>
- 128 finally:
- 129 asyncio.set_event_loop(old_loop)
- 130
- 131 def stop(self):
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\asyncio\base_events.py in run_forever(self=<_WindowsSelectorEventLoop running=True closed=False debug=False>)
- 417 sys.set_asyncgen_hooks(firstiter=self._asyncgen_firstiter_hook,
- 418 finalizer=self._asyncgen_finalizer_hook)
- 419 try:
- 420 events._set_running_loop(self)
- 421 while True:
- --> 422 self._run_once()
- self._run_once = <bound method BaseEventLoop._run_once of <_Windo...EventLoop running=True closed=False debug=False>>
- 423 if self._stopping:
- 424 break
- 425 finally:
- 426 self._stopping = False
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\asyncio\base_events.py in _run_once(self=<_WindowsSelectorEventLoop running=True closed=False debug=False>)
- 1427 logger.warning('Executing %s took %.3f seconds',
- 1428 _format_handle(handle), dt)
- 1429 finally:
- 1430 self._current_handle = None
- 1431 else:
- -> 1432 handle._run()
- handle._run = <bound method Handle._run of <Handle BaseAsyncIOLoop._handle_events(488, 1)>>
- 1433 handle = None # Needed to break cycles when an exception occurs.
- 1434
- 1435 def _set_coroutine_wrapper(self, enabled):
- 1436 try:
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\asyncio\events.py in _run(self=<Handle BaseAsyncIOLoop._handle_events(488, 1)>)
- 140 self._callback = None
- 141 self._args = None
- 142
- 143 def _run(self):
- 144 try:
- --> 145 self._callback(*self._args)
- self._callback = <bound method BaseAsyncIOLoop._handle_events of <tornado.platform.asyncio.AsyncIOMainLoop object>>
- self._args = (488, 1)
- 146 except Exception as exc:
- 147 cb = _format_callback_source(self._callback, self._args)
- 148 msg = 'Exception in callback {}'.format(cb)
- 149 context = {
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\tornado\platform\asyncio.py in _handle_events(self=<tornado.platform.asyncio.AsyncIOMainLoop object>, fd=488, events=1)
- 112 self.writers.remove(fd)
- 113 del self.handlers[fd]
- 114
- 115 def _handle_events(self, fd, events):
- 116 fileobj, handler_func = self.handlers[fd]
- --> 117 handler_func(fileobj, events)
- handler_func = <function wrap.<locals>.null_wrapper>
- fileobj = <zmq.sugar.socket.Socket object>
- events = 1
- 118
- 119 def start(self):
- 120 try:
- 121 old_loop = asyncio.get_event_loop()
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\tornado\stack_context.py in null_wrapper(*args=(<zmq.sugar.socket.Socket object>, 1), **kwargs={})
- 271 # Fast path when there are no active contexts.
- 272 def null_wrapper(*args, **kwargs):
- 273 try:
- 274 current_state = _state.contexts
- 275 _state.contexts = cap_contexts[0]
- --> 276 return fn(*args, **kwargs)
- args = (<zmq.sugar.socket.Socket object>, 1)
- kwargs = {}
- 277 finally:
- 278 _state.contexts = current_state
- 279 null_wrapper._wrapped = True
- 280 return null_wrapper
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py in _handle_events(self=<zmq.eventloop.zmqstream.ZMQStream object>, fd=<zmq.sugar.socket.Socket object>, events=1)
- 445 return
- 446 zmq_events = self.socket.EVENTS
- 447 try:
- 448 # dispatch events:
- 449 if zmq_events & zmq.POLLIN and self.receiving():
- --> 450 self._handle_recv()
- self._handle_recv = <bound method ZMQStream._handle_recv of <zmq.eventloop.zmqstream.ZMQStream object>>
- 451 if not self.socket:
- 452 return
- 453 if zmq_events & zmq.POLLOUT and self.sending():
- 454 self._handle_send()
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py in _handle_recv(self=<zmq.eventloop.zmqstream.ZMQStream object>)
- 475 else:
- 476 raise
- 477 else:
- 478 if self._recv_callback:
- 479 callback = self._recv_callback
- --> 480 self._run_callback(callback, msg)
- self._run_callback = <bound method ZMQStream._run_callback of <zmq.eventloop.zmqstream.ZMQStream object>>
- callback = <function wrap.<locals>.null_wrapper>
- msg = [<zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>]
- 481
- 482
- 483 def _handle_send(self):
- 484 """Handle a send event."""
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py in _run_callback(self=<zmq.eventloop.zmqstream.ZMQStream object>, callback=<function wrap.<locals>.null_wrapper>, *args=([<zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>],), **kwargs={})
- 427 close our socket."""
- 428 try:
- 429 # Use a NullContext to ensure that all StackContexts are run
- 430 # inside our blanket exception handler rather than outside.
- 431 with stack_context.NullContext():
- --> 432 callback(*args, **kwargs)
- callback = <function wrap.<locals>.null_wrapper>
- args = ([<zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>],)
- kwargs = {}
- 433 except:
- 434 gen_log.error("Uncaught exception in ZMQStream callback",
- 435 exc_info=True)
- 436 # Re-raise the exception so that IOLoop.handle_callback_exception
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\tornado\stack_context.py in null_wrapper(*args=([<zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>],), **kwargs={})
- 271 # Fast path when there are no active contexts.
- 272 def null_wrapper(*args, **kwargs):
- 273 try:
- 274 current_state = _state.contexts
- 275 _state.contexts = cap_contexts[0]
- --> 276 return fn(*args, **kwargs)
- args = ([<zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>],)
- kwargs = {}
- 277 finally:
- 278 _state.contexts = current_state
- 279 null_wrapper._wrapped = True
- 280 return null_wrapper
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel\kernelbase.py in dispatcher(msg=[<zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>])
- 278 if self.control_stream:
- 279 self.control_stream.on_recv(self.dispatch_control, copy=False)
- 280
- 281 def make_dispatcher(stream):
- 282 def dispatcher(msg):
- --> 283 return self.dispatch_shell(stream, msg)
- msg = [<zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>, <zmq.sugar.frame.Frame object>]
- 284 return dispatcher
- 285
- 286 for s in self.shell_streams:
- 287 s.on_recv(make_dispatcher(s), copy=False)
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel\kernelbase.py in dispatch_shell(self=<ipykernel.ipkernel.IPythonKernel object>, stream=<zmq.eventloop.zmqstream.ZMQStream object>, msg={'buffers': [], 'content': {'allow_stdin': True, 'code': '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', 'silent': False, 'stop_on_error': True, 'store_history': True, 'user_expressions': {}}, 'header': {'date': datetime.datetime(2018, 6, 25, 10, 45, 43, 857285, tzinfo=tzutc()), 'msg_id': 'd87de63984dd402f89f3c778fcf06aeb', 'msg_type': 'execute_request', 'session': '0e67879809694dd1b02d2ffe8f9eccf2', 'username': 'username', 'version': '5.2'}, 'metadata': {}, 'msg_id': 'd87de63984dd402f89f3c778fcf06aeb', 'msg_type': 'execute_request', 'parent_header': {}})
- 228 self.log.warn("Unknown message type: %r", msg_type)
- 229 else:
- 230 self.log.debug("%s: %s", msg_type, msg)
- 231 self.pre_handler_hook()
- 232 try:
- --> 233 handler(stream, idents, msg)
- handler = <bound method Kernel.execute_request of <ipykernel.ipkernel.IPythonKernel object>>
- stream = <zmq.eventloop.zmqstream.ZMQStream object>
- idents = [b'0e67879809694dd1b02d2ffe8f9eccf2']
- msg = {'buffers': [], 'content': {'allow_stdin': True, 'code': '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', 'silent': False, 'stop_on_error': True, 'store_history': True, 'user_expressions': {}}, 'header': {'date': datetime.datetime(2018, 6, 25, 10, 45, 43, 857285, tzinfo=tzutc()), 'msg_id': 'd87de63984dd402f89f3c778fcf06aeb', 'msg_type': 'execute_request', 'session': '0e67879809694dd1b02d2ffe8f9eccf2', 'username': 'username', 'version': '5.2'}, 'metadata': {}, 'msg_id': 'd87de63984dd402f89f3c778fcf06aeb', 'msg_type': 'execute_request', 'parent_header': {}}
- 234 except Exception:
- 235 self.log.error("Exception in message handler:", exc_info=True)
- 236 finally:
- 237 self.post_handler_hook()
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel\kernelbase.py in execute_request(self=<ipykernel.ipkernel.IPythonKernel object>, stream=<zmq.eventloop.zmqstream.ZMQStream object>, ident=[b'0e67879809694dd1b02d2ffe8f9eccf2'], parent={'buffers': [], 'content': {'allow_stdin': True, 'code': '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', 'silent': False, 'stop_on_error': True, 'store_history': True, 'user_expressions': {}}, 'header': {'date': datetime.datetime(2018, 6, 25, 10, 45, 43, 857285, tzinfo=tzutc()), 'msg_id': 'd87de63984dd402f89f3c778fcf06aeb', 'msg_type': 'execute_request', 'session': '0e67879809694dd1b02d2ffe8f9eccf2', 'username': 'username', 'version': '5.2'}, 'metadata': {}, 'msg_id': 'd87de63984dd402f89f3c778fcf06aeb', 'msg_type': 'execute_request', 'parent_header': {}})
- 394 if not silent:
- 395 self.execution_count += 1
- 396 self._publish_execute_input(code, parent, self.execution_count)
- 397
- 398 reply_content = self.do_execute(code, silent, store_history,
- --> 399 user_expressions, allow_stdin)
- user_expressions = {}
- allow_stdin = True
- 400
- 401 # Flush output before sending the reply.
- 402 sys.stdout.flush()
- 403 sys.stderr.flush()
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel\ipkernel.py in do_execute(self=<ipykernel.ipkernel.IPythonKernel object>, code='# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', silent=False, store_history=True, user_expressions={}, allow_stdin=True)
- 203
- 204 self._forward_input(allow_stdin)
- 205
- 206 reply_content = {}
- 207 try:
- --> 208 res = shell.run_cell(code, store_history=store_history, silent=silent)
- res = undefined
- shell.run_cell = <bound method ZMQInteractiveShell.run_cell of <ipykernel.zmqshell.ZMQInteractiveShell object>>
- code = '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)'
- store_history = True
- silent = False
- 209 finally:
- 210 self._restore_input()
- 211
- 212 if res.error_before_exec is not None:
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\ipykernel\zmqshell.py in run_cell(self=<ipykernel.zmqshell.ZMQInteractiveShell object>, *args=('# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)',), **kwargs={'silent': False, 'store_history': True})
- 532 )
- 533 self.payload_manager.write_payload(payload)
- 534
- 535 def run_cell(self, *args, **kwargs):
- 536 self._last_traceback = None
- --> 537 return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
- self.run_cell = <bound method ZMQInteractiveShell.run_cell of <ipykernel.zmqshell.ZMQInteractiveShell object>>
- args = ('# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)',)
- kwargs = {'silent': False, 'store_history': True}
- 538
- 539 def _showtraceback(self, etype, evalue, stb):
- 540 # try to preserve ordering of tracebacks and print statements
- 541 sys.stdout.flush()
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py in run_cell(self=<ipykernel.zmqshell.ZMQInteractiveShell object>, raw_cell='# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', store_history=True, silent=False, shell_futures=True)
- 2657 -------
- 2658 result : :class:`ExecutionResult`
- 2659 """
- 2660 try:
- 2661 result = self._run_cell(
- -> 2662 raw_cell, store_history, silent, shell_futures)
- raw_cell = '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)'
- store_history = True
- silent = False
- shell_futures = True
- 2663 finally:
- 2664 self.events.trigger('post_execute')
- 2665 if not silent:
- 2666 self.events.trigger('post_run_cell', result)
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py in _run_cell(self=<ipykernel.zmqshell.ZMQInteractiveShell object>, raw_cell='# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', store_history=True, silent=False, shell_futures=True)
- 2780 self.displayhook.exec_result = result
- 2781
- 2782 # Execute the user code
- 2783 interactivity = 'none' if silent else self.ast_node_interactivity
- 2784 has_raised = self.run_ast_nodes(code_ast.body, cell_name,
- -> 2785 interactivity=interactivity, compiler=compiler, result=result)
- interactivity = 'last_expr'
- compiler = <IPython.core.compilerop.CachingCompiler object>
- 2786
- 2787 self.last_execution_succeeded = not has_raised
- 2788 self.last_execution_result = result
- 2789
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py in run_ast_nodes(self=<ipykernel.zmqshell.ZMQInteractiveShell object>, nodelist=[<_ast.Assign object>, <_ast.Assign object>, <_ast.Assign object>, <_ast.Expr object>], cell_name='<ipython-input-39-bf87e95432e2>', interactivity='last', compiler=<IPython.core.compilerop.CachingCompiler object>, result=<ExecutionResult object at 27003f62e48, executio...rue silent=False shell_futures=True> result=None>)
- 2904 return True
- 2905
- 2906 for i, node in enumerate(to_run_interactive):
- 2907 mod = ast.Interactive([node])
- 2908 code = compiler(mod, cell_name, "single")
- -> 2909 if self.run_code(code, result):
- self.run_code = <bound method InteractiveShell.run_code of <ipykernel.zmqshell.ZMQInteractiveShell object>>
- code = <code object <module> at 0x0000027003EFDC00, file "<ipython-input-39-bf87e95432e2>", line 34>
- result = <ExecutionResult object at 27003f62e48, executio...rue silent=False shell_futures=True> result=None>
- 2910 return True
- 2911
- 2912 # Flush softspace
- 2913 if softspace(sys.stdout, 0):
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py in run_code(self=<ipykernel.zmqshell.ZMQInteractiveShell object>, code_obj=<code object <module> at 0x0000027003EFDC00, file "<ipython-input-39-bf87e95432e2>", line 34>, result=<ExecutionResult object at 27003f62e48, executio...rue silent=False shell_futures=True> result=None>)
- 2958 outflag = True # happens in more places, so it's easier as default
- 2959 try:
- 2960 try:
- 2961 self.hooks.pre_run_code_hook()
- 2962 #rprint('Running code', repr(code_obj)) # dbg
- -> 2963 exec(code_obj, self.user_global_ns, self.user_ns)
- code_obj = <code object <module> at 0x0000027003EFDC00, file "<ipython-input-39-bf87e95432e2>", line 34>
- self.user_global_ns = {'DecisionTreeClassifier': <class 'sklearn.tree.tree.DecisionTreeClassifier'>, 'GaussianNB': <class 'sklearn.naive_bayes.GaussianNB'>, 'GridSearchCV': <class 'sklearn.model_selection._search.GridSearchCV'>, 'In': ['', 'import pandas as pd\nimport numpy as np\nimport ma...andomForestClassifier\nfrom sklearn.svm import SVC', 'train = pd.read_csv("h1b_train.csv").dropna()\ntu...pna()\ntest = pd.read_csv("h1b_test.csv").dropna()', 'data_cls_tr = train[["CASE_STATUS", "SOC_NAME", ...(x_tu[:,2])\ny_tu = y_tu_label.fit_transform(y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', ...], 'KNeighborsClassifier': <class 'sklearn.neighbors.classification.KNeighborsClassifier'>, 'LabelEncoder': <class 'sklearn.preprocessing.label.LabelEncoder'>, 'Lasso': <class 'sklearn.linear_model.coordinate_descent.Lasso'>, 'LinearRegression': <class 'sklearn.linear_model.base.LinearRegression'>, 'LogisticRegression': <class 'sklearn.linear_model.logistic.LogisticRegression'>, 'MultinomialNB': <class 'sklearn.naive_bayes.MultinomialNB'>, ...}
- self.user_ns = {'DecisionTreeClassifier': <class 'sklearn.tree.tree.DecisionTreeClassifier'>, 'GaussianNB': <class 'sklearn.naive_bayes.GaussianNB'>, 'GridSearchCV': <class 'sklearn.model_selection._search.GridSearchCV'>, 'In': ['', 'import pandas as pd\nimport numpy as np\nimport ma...andomForestClassifier\nfrom sklearn.svm import SVC', 'train = pd.read_csv("h1b_train.csv").dropna()\ntu...pna()\ntest = pd.read_csv("h1b_test.csv").dropna()', 'data_cls_tr = train[["CASE_STATUS", "SOC_NAME", ...(x_tu[:,2])\ny_tu = y_tu_label.fit_transform(y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', '# x_train, x_test, y_train, y_test = train_test_... random_state=0)\nrandomcv.fit(x_tu, y_tu)', ...], 'KNeighborsClassifier': <class 'sklearn.neighbors.classification.KNeighborsClassifier'>, 'LabelEncoder': <class 'sklearn.preprocessing.label.LabelEncoder'>, 'Lasso': <class 'sklearn.linear_model.coordinate_descent.Lasso'>, 'LinearRegression': <class 'sklearn.linear_model.base.LinearRegression'>, 'LogisticRegression': <class 'sklearn.linear_model.logistic.LogisticRegression'>, 'MultinomialNB': <class 'sklearn.naive_bayes.MultinomialNB'>, ...}
- 2964 finally:
- 2965 # Reset our crash handler in place
- 2966 sys.excepthook = old_excepthook
- 2967 except SystemExit as e:
- ...........................................................................
- C:\Users\Jason\<ipython-input-39-bf87e95432e2> in <module>()
- 29 "class_weight": ["balanced", None]}
- 30
- 31 randomcv = RandomizedSearchCV(estimator=classifier, param_distributions=parameters,
- 32 scoring='accuracy', cv=10, n_jobs=-1,
- 33 random_state=0)
- ---> 34 randomcv.fit(x_tu, y_tu)
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self=RandomizedSearchCV(cv=10, error_score='raise',
- ...rain_score='warn', scoring='accuracy', verbose=0), X=array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), y=array([0, 0, 0, ..., 0, 2, 0], dtype=int64), groups=None, **fit_params={})
- 634 return_train_score=self.return_train_score,
- 635 return_n_test_samples=True,
- 636 return_times=True, return_parameters=False,
- 637 error_score=self.error_score)
- 638 for parameters, (train, test) in product(candidate_params,
- --> 639 cv.split(X, y, groups)))
- cv.split = <bound method StratifiedKFold.split of Stratifie...d(n_splits=10, random_state=None, shuffle=False)>
- X = array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object)
- y = array([0, 0, 0, ..., 0, 2, 0], dtype=int64)
- groups = None
- 640
- 641 # if one choose to see train score, "out" will contain train score info
- 642 if self.return_train_score:
- 643 (train_score_dicts, test_score_dicts, test_sample_counts, fit_time,
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self=Parallel(n_jobs=-1), iterable=<generator object BaseSearchCV.fit.<locals>.<genexpr>>)
- 784 if pre_dispatch == "all" or n_jobs == 1:
- 785 # The iterable was consumed all at once by the above for loop.
- 786 # No need to wait for async callbacks to trigger to
- 787 # consumption.
- 788 self._iterating = False
- --> 789 self.retrieve()
- self.retrieve = <bound method Parallel.retrieve of Parallel(n_jobs=-1)>
- 790 # Make sure that we get a last message telling us we are done
- 791 elapsed_time = time.time() - self._start_time
- 792 self._print('Done %3i out of %3i | elapsed: %s finished',
- 793 (len(self._output), len(self._output),
- ---------------------------------------------------------------------------
- Sub-process traceback:
- ---------------------------------------------------------------------------
- ValueError Mon Jun 25 19:45:44 2018
- PID: 5588 Python 3.6.5: C:\Users\Jason\Anaconda3\python.exe
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self=<sklearn.externals.joblib.parallel.BatchedCalls object>)
- 126 def __init__(self, iterator_slice):
- 127 self.items = list(iterator_slice)
- 128 self._size = len(self.items)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- self.items = [(<function _fit_and_score>, (SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), {'score': make_scorer(accuracy_score)}, memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), array([ 0, 1, 2, ..., 58765, 67140, 502152]), 0, {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}), {'error_score': 'raise', 'fit_params': {}, 'return_n_test_samples': True, 'return_parameters': False, 'return_times': True, 'return_train_score': 'warn'})]
- 132
- 133 def __len__(self):
- 134 return self._size
- 135
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0=<list_iterator object>)
- 126 def __init__(self, iterator_slice):
- 127 self.items = list(iterator_slice)
- 128 self._size = len(self.items)
- 129
- 130 def __call__(self):
- --> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
- func = <function _fit_and_score>
- args = (SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), {'score': make_scorer(accuracy_score)}, memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), array([ 0, 1, 2, ..., 58765, 67140, 502152]), 0, {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'})
- kwargs = {'error_score': 'raise', 'fit_params': {}, 'return_n_test_samples': True, 'return_parameters': False, 'return_times': True, 'return_train_score': 'warn'}
- 132
- 133 def __len__(self):
- 134 return self._size
- 135
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator=SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), X=array([[375, 84760, 970],
- [270, 87607, 19... 1531],
- [1270, 2817, 1531]], dtype=object), y=memmap([0, 0, 0, ..., 0, 2, 0], dtype=int64), scorer={'score': make_scorer(accuracy_score)}, train=memmap([ 57335, 57337, 57344, ..., 574952, 574953, 574954]), test=array([ 0, 1, 2, ..., 58765, 67140, 502152]), verbose=0, parameters={'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}, fit_params={}, return_train_score='warn', return_parameters=False, return_n_test_samples=True, return_times=True, error_score='raise')
- 439 for k, v in fit_params.items()])
- 440
- 441 test_scores = {}
- 442 train_scores = {}
- 443 if parameters is not None:
- --> 444 estimator.set_params(**parameters)
- estimator.set_params = <bound method BaseEstimator.set_params of SVC(C=...one, shrinking=True,
- tol=0.001, verbose=False)>
- parameters = {'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'}
- 445
- 446 start_time = time.time()
- 447
- 448 X_train, y_train = _safe_split(estimator, X, y, train)
- ...........................................................................
- C:\Users\Jason\Anaconda3\lib\site-packages\sklearn\base.py in set_params(self=SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False), **params={'c': 79.587450816311, 'class_weight': None, 'gamma': 0.18596042409118513, 'kernel': 'linear'})
- 269 key, delim, sub_key = key.partition('__')
- 270 if key not in valid_params:
- 271 raise ValueError('Invalid parameter %s for estimator %s. '
- 272 'Check the list of available parameters '
- 273 'with `estimator.get_params().keys()`.' %
- --> 274 (key, self))
- key = 'c'
- self = SVC(C=1.0, cache_size=200, class_weight=None, co...None, shrinking=True,
- tol=0.001, verbose=False)
- 275
- 276 if delim:
- 277 nested_params[key][sub_key] = value
- 278 else:
- ValueError: Invalid parameter c for estimator SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
- decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
- max_iter=-1, probability=False, random_state=None, shrinking=True,
- tol=0.001, verbose=False). Check the list of available parameters with `estimator.get_params().keys()`.
- ___________________________________________________________________________
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement