Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- import numpy as np
- import os
- data = [[100,'A','1','','','8/1/2015','CA2.2','','','','','','','',''],
- [100,'A','2','','','7/1/2019','CA2.0','8/21/2019','','','','','','',''],
- [100,'B','1','','','','','','CA2.2','6/15/2018','6/15/2016','8/1/2019','','',''],
- [100,'B','2','','','','','','CA2.0','12/15/2018','12/15/2016','','','',''],
- [100,'B','3','','','','','','CA2.0','12/15/2018','12/15/2016','8/21/2019','','',''],
- [100,'C','1','','','','','','','','','','6/15/2016','CA2.2',''],
- [100,'C','2','','','','','','','','','','12/15/2017','CA2.0','8/21/2019'],
- [100,'Rec','','6/12/2019','8/1/2019','','','','','','','','','',''],
- [200,'A','1','','','8/1/2015','CA2.2','','','','','','','',''],
- [200,'A','2','','','7/1/2015','CA2.0','8/21/2019','','','','','','',''],
- [200,'B','1','','','','','','CA2.2','6/15/2018','6/15/2016','8/1/2019','','',''],
- [200,'B','2','','','','','','CA2.0','12/15/2018','12/15/2016','','','',''],
- [200,'B','3','','','','','','CA2.0','12/15/2018','12/15/2016','8/21/2019','','',''],
- [200,'C','1','','','','','','','','','','6/15/2016','CA2.2',''],
- [200,'C','2','','','','','','','','','','12/15/2017','CA2.0','8/21/2019'],
- [200,'Rec','','6/12/2019','8/1/2019','','','','','','','','','',''],]
- df = pd.DataFrame(data,columns=['Cust_ID','Dep','Order_Num','Rec_Date1',
- 'Rec_DateX','A_Date1','A_Loc1','A_DateX',
- 'B_Loc1','B_Date1','B_Date2','B_DateX',
- 'C_Date1','C_Loc1','C_DateX'])
- # replace blanks with np.NaN
- df.replace(r"^s*$", np.nan, regex=True, inplace = True)
- # Add loc column and populate
- df.insert(loc=3, column="Site", value=np.nan)
- df.insert(loc=0, column="Result", value=np.nan)
- df.loc[df["A_Loc1"].notna(),
- "Site"] = df["A_Loc1"]
- df.loc[df["B_Loc1"].notna(),
- "Site"] = df["B_Loc1"]
- df.loc[df["C_Loc1"].notna(),
- "Site"] = df["C_Loc1"
- df.to_csv("test_df.csv", index = False)
Advertisement
Add Comment
Please, Sign In to add comment