MatsGranvik

Shifted spikes in Fourier spectra of primes.

Aug 22nd, 2023
104
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 2.20 KB | None | 0 0
  1. Clear[n, k, t, A, nn, B]
  2. b = {1}
  3. nn = 60
  4. A = Table[
  5. Table[If[Mod[n, k] == 0, 1/(n/k)^(1/2 + I*t - 1), 0], {k, 1,
  6. nn}], {n, 1, nn}];
  7. MatrixForm[A];
  8. inverseA = Inverse[A];
  9. inverseA =
  10. Table[Table[
  11. inverseA[[n, k]] b[[1 + Mod[n - 1, 1]]], {k, 1, nn}], {n, 1, nn}];
  12. B = FourierDCT[
  13. Table[Total[
  14. 1/Table[n, {n, 1, nn}]*(Total[
  15. Transpose[Re[inverseA*Zeta[1/2 + I*t]]]] - 1)], {t, 1/1000,
  16. 600, N[1/6]}]];
  17. g1 = ListLinePlot[B[[1 ;; 700]], DataRange -> {0, 60},
  18. PlotRange -> {-10, 30}, Axes -> False];
  19. mm = 11.35/Log[2];
  20. g2 = Graphics[
  21. Table[Style[Text[n, {mm*Log[n], 5 - (-1)^n}],
  22. FontFamily -> "Times New Roman", FontSize -> 14], {n, 1, 16}]];
  23. Show[g1, g2, ImageSize -> Large]
  24.  
  25.  
  26. Clear[n, k, t, A, nn, B]
  27. b = {1, -1}
  28. nn = 60
  29. A = Table[
  30. Table[If[Mod[n, k] == 0, 1/(n/k)^(1/2 + I*t - 1), 0], {k, 1,
  31. nn}], {n, 1, nn}];
  32. MatrixForm[A];
  33. inverseA = Inverse[A];
  34. inverseA =
  35. Table[Table[
  36. inverseA[[n, k]] b[[1 + Mod[n - 1, 2]]], {k, 1, nn}], {n, 1, nn}];
  37. B = FourierDCT[
  38. Table[Total[
  39. 1/Table[n, {n, 1, nn}]*(Total[
  40. Transpose[Re[inverseA*Zeta[1/2 + I*t]]]] - 1)], {t, 1/1000,
  41. 600, N[1/6]}]];
  42. g1 = ListLinePlot[B[[1 ;; 700]], DataRange -> {0, 60},
  43. PlotRange -> {-10, 60}, Axes -> False];
  44. mm = 11.35/Log[2];
  45. g2 = Graphics[
  46. Table[Style[Text[n, {mm*Log[n], 5 - (-1)^n}],
  47. FontFamily -> "Times New Roman", FontSize -> 14], {n, 1, 16}]];
  48. Show[g1, g2, ImageSize -> Large]
  49.  
  50.  
  51. Clear[n, k, t, A, nn, B]
  52. b = {1, 1, -2}
  53. nn = 60
  54. A = Table[
  55. Table[If[Mod[n, k] == 0, 1/(n/k)^(1/2 + I*t - 1), 0], {k, 1,
  56. nn}], {n, 1, nn}];
  57. MatrixForm[A];
  58. inverseA = Inverse[A];
  59. inverseA =
  60. Table[Table[
  61. inverseA[[n, k]] b[[1 + Mod[n - 1, 3]]], {k, 1, nn}], {n, 1, nn}];
  62. B = FourierDCT[
  63. Table[Total[
  64. 1/Table[n, {n, 1, nn}]*(Total[
  65. Transpose[Re[inverseA*Zeta[1/2 + I*t]]]] - 1)], {t, 1/1000,
  66. 600, N[1/6]}]];
  67. g1 = ListLinePlot[B[[1 ;; 700]], DataRange -> {0, 60},
  68. PlotRange -> {-10, 60}, Axes -> False];
  69. mm = 11.35/Log[2];
  70. g2 = Graphics[
  71. Table[Style[Text[n, {mm*Log[n], 5 - (-1)^n}],
  72. FontFamily -> "Times New Roman", FontSize -> 14], {n, 1, 16}]];
  73. Show[g1, g2, ImageSize -> Large]
Advertisement
Add Comment
Please, Sign In to add comment