SHOW:
|
|
- or go back to the newest paste.
| 1 | #! /usr/bin/env python2 | |
| 2 | ||
| 3 | import numpy as np | |
| 4 | from scipy.integrate import odeint | |
| 5 | ||
| 6 | def Data_init(**kwargs): | |
| 7 | """ | |
| 8 | if there is a kwarg['file'], then read from file, otherwise find | |
| 9 | kwargs['dimensions'] and kwargs['particles'] and randomize data. If | |
| 10 | this fails, print an error. | |
| 11 | ||
| 12 | kwargs['time'] is a tuple of final time and number of steps. | |
| 13 | """ | |
| 14 | if 'file' in kwargs: | |
| 15 | print "Reading the file" | |
| 16 | else: | |
| 17 | print "Randomizing the initial data" | |
| 18 | X = np.random.rand(kwargs['particles'],kwargs['dimensions']) * 2 - 1 | |
| 19 | V = np.random.rand(kwargs['particles'],kwargs['dimensions']) * 2 - 1 | |
| 20 | M = np.random.rand(kwargs['particles']) | |
| 21 | ||
| 22 | t_f,num = kwargs['time'] | |
| 23 | t = np.linspace(0,t_f,num) | |
| 24 | ||
| 25 | return X,V,M,t | |
| 26 | ||
| 27 | def Gravitational_force(X,M): | |
| 28 | # Expand the collections | |
| 29 | x1, x2 = X | |
| 30 | m1, m2 = M | |
| 31 | ||
| 32 | # Calculate a displacement vector | |
| 33 | r = x2-x1 | |
| 34 | # Calculate it's magnitude | |
| 35 | r_mod = np.sqrt(r.dot(r)) | |
| 36 | # Calculate the force itself | |
| 37 | f = m1*m2*r / np.power(r_mod,3) | |
| 38 | ||
| 39 | return f | |
| 40 | ||
| 41 | def Net_force_1(X,M): | |
| 42 | F = np.zeros(X.shape) | |
| 43 | for i in xrange(X.shape[0]): | |
| 44 | for j in xrange(X.shape[0]): | |
| 45 | if i == j: | |
| 46 | continue | |
| 47 | F += Gravitational_force( | |
| 48 | [ X[i,:], X[j,:] ], | |
| 49 | [ M[i], M[j] ] | |
| 50 | ) | |
| 51 | ||
| 52 | return F | |
| 53 | ||
| 54 | def ODE(W,t,M): | |
| 55 | """ | |
| 56 | This is the function which is needed for odeint function | |
| 57 | """ | |
| 58 | X, V = W | |
| 59 | F = Net_force_1(X,M) | |
| 60 | function = [] | |
| 61 | for i in xrange(X.shape[0]): | |
| 62 | for j in xrange(X.shape[1]): | |
| 63 | function += [ | |
| 64 | V[i,j],F[i,j] | |
| 65 | ] | |
| 66 | return function | |
| 67 | ||
| 68 | # Initiate the data: | |
| 69 | X0,V0,M,t = Data_init(particles=4,dimensions=2,time=[10,255]) | |
| 70 | ||
| 71 | # Solve the ODE system | |
| 72 | solution = odeint(ODE,[X0,V0],t,args=(M,)) |