SHOW:
|
|
- or go back to the newest paste.
1 | using System; | |
2 | using System.Linq; | |
3 | ||
4 | namespace _5.RubiksMatrix | |
5 | { | |
6 | class RubiksMatrix | |
7 | { | |
8 | static void Main() | |
9 | { | |
10 | int[] matrixSize = Console.ReadLine().Split(new[] { ' ', '\t', '\r' }, StringSplitOptions.RemoveEmptyEntries).Select(int.Parse).ToArray(); | |
11 | int commandCount = int.Parse(Console.ReadLine()); | |
12 | ||
13 | int[,] matrix = new int[matrixSize[0], matrixSize[1]]; | |
14 | fillMatrix(matrixSize, matrix); | |
15 | int[,] matrixC = new int[matrixSize[0], matrixSize[1]]; | |
16 | fillMatrix(matrixSize, matrixC); | |
17 | ||
18 | CalculationMatrix(matrixSize, commandCount, matrix); | |
19 | ||
20 | for (int i = 0; i < matrixSize[0]; i++) | |
21 | { | |
22 | for (int j = 0; j < matrixSize[1]; j++) | |
23 | { | |
24 | if (matrix[i,j] != matrixC[i,j]) | |
25 | { | |
26 | int indexRow = 0; | |
27 | int indexCol = 0; | |
28 | for (int k = 0; k < matrixSize[0]; k++) | |
29 | { | |
30 | for (int y = 0; y < matrixSize[1]; y++) | |
31 | { | |
32 | if (matrix[k,y] == matrixC[i,j]) | |
33 | { | |
34 | indexRow = k; | |
35 | indexCol = y; | |
36 | int x = matrix[i, j]; | |
37 | matrix[i, j] = matrixC[i, j]; | |
38 | matrix[k, y] = x; | |
39 | break; | |
40 | } | |
41 | } | |
42 | } | |
43 | Console.WriteLine("Swap ({0}, {1}) with ({2}, {3})",i,j, indexRow,indexCol); | |
44 | ||
45 | } | |
46 | else | |
47 | { | |
48 | Console.WriteLine("No swap required"); | |
49 | } | |
50 | } | |
51 | } | |
52 | } | |
53 | ||
54 | private static void CalculationMatrix(int[] matrixSize, int commandCount, int[,] matrix) | |
55 | { | |
56 | for (int i = 0; i < commandCount; i++) | |
57 | { | |
58 | string[] line = Console.ReadLine().Split(new[] { ' ', '\t', '\r' }, StringSplitOptions.RemoveEmptyEntries); | |
59 | int f = int.Parse(line[0]); | |
60 | int s = int.Parse(line[2]); | |
61 | if (line[1].ToLower() == "left") | |
62 | { | |
63 | for (int l = 0; l < s % matrixSize[1]; l++) | |
64 | { | |
65 | int firstNum = matrix[f, 0]; | |
66 | for (int k = 0; k < matrixSize[1] - 1; k++) | |
67 | { | |
68 | matrix[f, k] = matrix[f, k + 1]; | |
69 | } | |
70 | matrix[f, matrixSize[1] - 1] = firstNum; | |
71 | } | |
72 | } | |
73 | if (line[1].ToLower() == "right") | |
74 | { | |
75 | for (int l = 0; l < s % matrixSize[1]; l++) | |
76 | { | |
77 | int lastNum = matrix[f, matrixSize[1] - 1]; | |
78 | for (int k = matrixSize[1] - 1; k > 0; k--) | |
79 | { | |
80 | matrix[f, k] = matrix[f, k - 1]; | |
81 | } | |
82 | matrix[f, 0] = lastNum; | |
83 | } | |
84 | } | |
85 | if (line[1].ToLower() == "down") | |
86 | { | |
87 | for (int l = 0; l < s % matrixSize[0]; l++) | |
88 | { | |
89 | int lastNum = matrix[matrixSize[0] - 1, f]; | |
90 | for (int k = matrixSize[0] - 1; k > 0; k--) | |
91 | { | |
92 | matrix[k, f] = matrix[k - 1, f]; | |
93 | } | |
94 | matrix[0, f] = lastNum; | |
95 | } | |
96 | } | |
97 | if (line[1].ToLower() == "up") | |
98 | { | |
99 | for (int l = 0; l < s % matrixSize[0]; l++) | |
100 | { | |
101 | int firstNum = matrix[0, f]; | |
102 | for (int k = 0; k < matrixSize[0] - 1; k++) | |
103 | { | |
104 | matrix[k, f] = matrix[k + 1, f]; | |
105 | } | |
106 | matrix[matrixSize[0] - 1, f] = firstNum; | |
107 | } | |
108 | } | |
109 | } | |
110 | } | |
111 | ||
112 | private static void fillMatrix(int[] matrixSize, int[,] matrix) | |
113 | { | |
114 | int curNum = 1; | |
115 | for (int i = 0; i < matrixSize[0]; i++) | |
116 | { | |
117 | for (int j = 0; j < matrixSize[1]; j++) | |
118 | { | |
119 | matrix[i, j] = curNum; | |
120 | curNum++; | |
121 | } | |
122 | } | |
123 | } | |
124 | } | |
125 | } |