MatsGranvik

First and second zeta zero relation to tetration and Lambert

Aug 23rd, 2014
394
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.00 KB | None | 0 0
  1. Clear[a, b, c, d, bigNumber]
  2. a = RandomReal[] 10;
  3. bigNumber = 10000000000000000000000000;
  4. Monitor[Do[
  5. a = Round[(((2*Pi*Exp[1]/Im[ZetaZero[1]])^(2*Pi*
  6. Exp[1]/Im[ZetaZero[1]]))^-a)*bigNumber]/bigNumber;
  7. , {n, 1, 2000}], n]
  8. N[a, 30]
  9. b = N[-(a*Log[a]*Exp[1] - 1), 30]
  10. N[2*Pi*Exp[1]*(1 - b)/Exp[1]/LambertW[(1 - b)/Exp[1]]*I, 30]
  11.  
  12. Clear[a, b, c, d, bigNumber]
  13. a = RandomReal[] 10;
  14. b = RandomReal[] 10;
  15. c = RandomReal[] 10;
  16. bigNumber = 10000000000000000000000000;
  17. Monitor[Do[
  18. a = Round[(((2*2*Pi*Exp[1]/Im[ZetaZero[2]])^(2*Pi*
  19. Exp[1]/Im[ZetaZero[2]]))^-(a + b))*bigNumber]/bigNumber;
  20. b = Round[(((2*2*Pi*Exp[1]/Im[ZetaZero[2]])^(2*Pi*
  21. Exp[1]/Im[ZetaZero[2]]))^-(a + b))*bigNumber]/
  22. bigNumber;, {n, 1, 2000}], n]
  23. N[a, 30]
  24. N[b, 30]
  25. b = N[-(2*a*Log[2*a]*Exp[1] - 2), 30]
  26. N[2*Pi*Exp[1]*(2 - b)/Exp[1]/LambertW[(2 - b)/Exp[1]]*I, 30]
  27.  
  28. N[Table[(2*n* \[Pi] + Im[ZetaZero[n]] -
  29. Im[ZetaZero[n]] Log[Im[ZetaZero[n]]/(2 \[Pi])])/(
  30. 2 \[Pi]), {n, 1, 12}], 30]
Advertisement
Add Comment
Please, Sign In to add comment