Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- params = {
- 'n_estimators' : 10000,
- 'objective' : 'binary',
- 'learning_rate' : 0.05,
- 'reg_alpha' : 0.1,
- 'reg_lambda' : 0.1,
- 'seed' : 50,
- 'metric' : 'auc',
- 'verbose' : 100
- }
- for i in range(2, 12):
- train_bin = lgb.Dataset('train_bin_{}.bin'.format(i))
- valid_bin = lgb.Dataset('valid_bin_{}.bin'.format(i))
- model = lgb.train(params, train_bin, valid_sets=[valid_bin], early_stopping_rounds=100)
- print(model.best_iteration_)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement