Advertisement
aironman

dl4j output initialize

Jul 19th, 2018
96
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. ZooModel zooModel = new VGG16();
  2. System.out.println("Start Downloading VGG16 model...");
  3. ComputationGraph preTrainedNet = (ComputationGraph) zooModel.initPretrained(PretrainedType.IMAGENET);
  4. System.out.println("Init summary...");
  5. System.out.println(preTrainedNet.summary());
  6. System.out.println("END summary...");
  7.  
  8. //output...
  9.  
  10. SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
  11. SLF4J: Defaulting to no-operation (NOP) logger implementation
  12. SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
  13. Start Downloading VGG16 model...
  14. Init summary...
  15.  
  16. ============================================================================================================================================
  17. VertexName (VertexType) nIn,nOut TotalParams ParamsShape Vertex Inputs
  18. ============================================================================================================================================
  19. input_1 (InputVertex) -,- - - -
  20. block1_conv1 (ConvolutionLayer) 3,64 1792 b:{1,64}, W:{64,3,3,3} [input_1]
  21. block1_conv2 (ConvolutionLayer) 64,64 36928 b:{1,64}, W:{64,64,3,3} [block1_conv1]
  22. block1_pool (SubsamplingLayer) -,- 0 - [block1_conv2]
  23. block2_conv1 (ConvolutionLayer) 64,128 73856 b:{1,128}, W:{128,64,3,3} [block1_pool]
  24. block2_conv2 (ConvolutionLayer) 128,128 147584 b:{1,128}, W:{128,128,3,3} [block2_conv1]
  25. block2_pool (SubsamplingLayer) -,- 0 - [block2_conv2]
  26. block3_conv1 (ConvolutionLayer) 128,256 295168 b:{1,256}, W:{256,128,3,3} [block2_pool]
  27. block3_conv2 (ConvolutionLayer) 256,256 590080 b:{1,256}, W:{256,256,3,3} [block3_conv1]
  28. block3_conv3 (ConvolutionLayer) 256,256 590080 b:{1,256}, W:{256,256,3,3} [block3_conv2]
  29. block3_pool (SubsamplingLayer) -,- 0 - [block3_conv3]
  30. block4_conv1 (ConvolutionLayer) 256,512 1180160 b:{1,512}, W:{512,256,3,3} [block3_pool]
  31. block4_conv2 (ConvolutionLayer) 512,512 2359808 b:{1,512}, W:{512,512,3,3} [block4_conv1]
  32. block4_conv3 (ConvolutionLayer) 512,512 2359808 b:{1,512}, W:{512,512,3,3} [block4_conv2]
  33. block4_pool (SubsamplingLayer) -,- 0 - [block4_conv3]
  34. block5_conv1 (ConvolutionLayer) 512,512 2359808 b:{1,512}, W:{512,512,3,3} [block4_pool]
  35. block5_conv2 (ConvolutionLayer) 512,512 2359808 b:{1,512}, W:{512,512,3,3} [block5_conv1]
  36. block5_conv3 (ConvolutionLayer) 512,512 2359808 b:{1,512}, W:{512,512,3,3} [block5_conv2]
  37. block5_pool (SubsamplingLayer) -,- 0 - [block5_conv3]
  38. flatten (PreprocessorVertex) -,- - - [block5_pool]
  39. fc1 (DenseLayer) 25088,4096 102764544 b:{1,4096}, W:{25088,4096} [flatten]
  40. fc2 (DenseLayer) 4096,4096 16781312 b:{1,4096}, W:{4096,4096} [fc1]
  41. predictions (DenseLayer) 4096,1000 4097000 b:{1,1000}, W:{4096,1000} [fc2]
  42. --------------------------------------------------------------------------------------------------------------------------------------------
  43. Total Parameters: 138357544
  44. Trainable Parameters: 138357544
  45. Frozen Parameters: 0
  46. ============================================================================================================================================
  47.  
  48. END summary...
Advertisement
Advertisement
Advertisement
RAW Paste Data Copied
Advertisement