Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- def frac_gen(n):
- num = sum(var(f'x0_{i}') * x^(n-1-i) for i in range(n))
- den = sum(var(f'x1_{i}') * x^(n-1-i) for i in range(n))
- expression = num/den
- expression = derivative(expression, x) * den^2
- return expression
- def func(n, m):
- for r in range(n-2):
- for c in range(n):
- if r==c:
- m[r,c]=1
- elif r+1==c:
- m[r,c]=-2*x
- elif r+2==c:
- m[r,c]=x^2
- for r in range(-1, -3, -1):
- for c in range(n):
- m[r,c]=var(f'x{2+r}_{c}')
- return m
- def matrix_gen(n):
- m = matrix(SR, n, n)
- m = func(n, m)
- return m
- # actually check for size n, True means that the conjecture stands
- n = 8
- print(bool(matrix_gen(n).determinant()==frac_gen(n)))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement