Advertisement
Guest User

Matrix derivative validity

a guest
Nov 16th, 2024
88
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 0.78 KB | Science | 0 0
  1. def frac_gen(n):
  2.     num = sum(var(f'x0_{i}') * x^(n-1-i) for i in range(n))
  3.     den = sum(var(f'x1_{i}') * x^(n-1-i) for i in range(n))
  4.     expression = num/den
  5.     expression = derivative(expression, x) * den^2
  6.     return expression
  7.  
  8. def func(n, m):
  9.     for r in range(n-2):
  10.         for c in range(n):
  11.             if r==c:
  12.                 m[r,c]=1
  13.             elif r+1==c:
  14.                 m[r,c]=-2*x
  15.             elif r+2==c:
  16.                 m[r,c]=x^2
  17.     for r in range(-1, -3, -1):
  18.         for c in range(n):
  19.             m[r,c]=var(f'x{2+r}_{c}')
  20.     return m
  21.  
  22. def matrix_gen(n):
  23.     m = matrix(SR, n, n)
  24.     m = func(n, m)
  25.     return m
  26.  
  27. # actually check for size n, True means that the conjecture stands
  28. n = 8
  29. print(bool(matrix_gen(n).determinant()==frac_gen(n)))
  30.  
  31.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement