Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (* Start *)
- (* Gram points to arbitrary precision *)
- c = 7/8;
- x = N[Table[2*Pi*Exp[1]*Exp[ProductLog[(n - c)/Exp[1]]], {n, 1, 42}],
- 40];
- Do[n = N[Round[(x/(2*Pi)*Log[x/(2*Pi*Exp[1])] - 1/8 -
- RiemannSiegelTheta[x]/Pi) + Range[42], 10^-20], 20];
- x = N[Round[2*Pi*Exp[1]*Exp[ProductLog[(n - c)/Exp[1]]], 10^-20],
- 20];, {i, 1, 20}]
- n
- x
- RiemannSiegelTheta[x]/Pi
- Round[x]
- (* start *)
- (* Gram points *)
- Table[N[InverseFunction[RiemannSiegelTheta][Pi*(n - 1)], 30], {n, 0,
- 12}]
- Round[%]
- (* end *)
- (* start *)
- (* complementary Gram points *)
- Table[N[InverseFunction[RiemannSiegelTheta][Pi*(n - 1/2)], 30], {n, 0,
- 12}]
- Round[%]
- (* end *)
- (* Franca-Leclair points to arbitrary precision *)
- c = 11/8;
- x = N[Table[2*Pi*Exp[1]*Exp[ProductLog[(n - c)/Exp[1]]], {n, 1, 42}],
- 40];
- Do[n = N[Round[(x/(2*Pi)*Log[x/(2*Pi*Exp[1])] - 1/8 -
- RiemannSiegelTheta[x]/Pi) + Range[42], 10^-20], 20];
- x = N[Round[2*Pi*Exp[1]*Exp[ProductLog[(n - c)/Exp[1]]], 10^-20],
- 20];, {i, 1, 12}]
- n
- x
- RiemannSiegelTheta[x]/Pi
- Round[x]
- (* End *)
- (* Start *)
- (*Setting the variable start=1 gives the minus 1-th Gram \
- point.*)Clear[n]; start = 1; end = 42;(*Interesting values of the \
- variable c are:c=0 c=1/2 c=1/4 c=3/4*)c = 0; numberOfIterations = \
- 300; decimaldigits = 100; Monitor[
- x = Table[x = 1;
- Do[x = N[
- Round[2*Pi*
- E^(ProductLog[-((c - n +
- RiemannSiegelTheta[x]/
- Pi + (x*(-Log[x] + 1 + Log[2] + Log[Pi]))/(2*
- Pi) + 2)/E)] + 1), 10^(-decimaldigits)],
- decimaldigits];, {i, 1, numberOfIterations}];
- x, {n, start, end}];, n]; Zeta[
- 1/2 + I*x]; Round[x] (*_Mats Granvik_,Jun 17 2017*)
- (* End *)
- (* Start *)
- (* Mathematica *)
- (* Derivation of the Gram point approximation by Weisstein in \
- Mathworld, https://oeis.org/A002505 *)
- Clear[x, n, a, g];
- Series[RiemannSiegelTheta[x], {x, Infinity, 12}]
- a = Normal[Series[RiemannSiegelTheta[x], {x, Infinity, 0}]]
- g = FullSimplify[(x /. Solve[a == n*Pi, x])[[1]]]
- (* g above is equivalent to g[n_] = 2*E^(1 + ProductLog[(1 + \
- 8*n)/(8*E)])*Pi *)
- n = Range[42] - 2;
- N[g, 20]
- Round[g]
- (* End *)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement