Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Block for general settings.
- library: general
- settings:
- # Time until a timeout in seconds.
- timeout: 9000
- # databaseHost: 'localhost'
- # port: 3306
- database: 'benchmark.db'
- driver : 'sqlite'
- keepReports: 20
- bootstrap: 10
- libraries: ['mlpack', 'shogun', 'weka', 'scikit', 'mlpy', 'flann', 'ann', 'annoy', 'mrpt', 'dlibml']
- version: ['HEAD', '3.2.0', '3.6.11', '0.15.1', '3.5.0', '1.8.4', '1.1.2', '1.8.3', '0.1', '19.4']
- ---
- # MLPACK:
- # A Scalable C++ Machine Learning Library
- library: mlpack
- methods:
- DTC:
- run: ['metric']
- script: methods/mlpack/decision_tree.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- PCA:
- run: ['metric']
- script: methods/mlpack/pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv']
- PERCEPTRON:
- run: ['metric']
- script: methods/mlpack/perceptron.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- max_iterations: 10000
- DecisionStump:
- run: ['metric']
- script: methods/mlpack/decision_stump.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/dexter_train.csv', 'datasets/dexter_test.csv'],
- ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
- ['datasets/optdigits_train.csv', 'datasets/optdigits_test.csv'],
- ['datasets/shuttle_train.csv', 'datasets/shuttle_test.csv'],
- ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- NMF:
- run: ['metric']
- script: methods/mlpack/nmf.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
- 'datasets/optdigits.csv', 'datasets/waveform.csv',
- 'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
- 'datasets/isolet.csv', 'datasets/mnist_all.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- rank: 6
- seed: 42
- update_rules: multdist
- - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
- 'datasets/optdigits.csv', 'datasets/waveform.csv',
- 'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
- 'datasets/isolet.csv', 'datasets/mnist_all.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- rank: 6
- seed: 42
- update_rules: multdiv
- - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
- 'datasets/optdigits.csv', 'datasets/waveform.csv',
- 'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
- 'datasets/isolet.csv', 'datasets/mnist_all.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- rank: 6
- seed: 42
- update_rules: als
- NBC:
- run: ['metric']
- script: methods/mlpack/nbc.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
- ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
- ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
- options:
- incremental: True
- KPCA:
- run: ['metric']
- script: methods/mlpack/kernel_pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: linear
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: gaussian
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: polynomial
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: hyptan
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: laplacian
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: cosine
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: gaussian
- nystroem: true
- sampling_scheme: kmeans
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: polynomial
- nystroem: true
- sampling_scheme: kmeans
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: cosine
- nystroem: true
- sampling_scheme: kmeans
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: gaussian
- nystroem: true
- sampling_scheme: random
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: polynomial
- nystroem: true
- sampling_scheme: random
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: cosine
- nystroem: true
- sampling_scheme: random
- LARS:
- run: ['metric']
- script: methods/mlpack/lars.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
- ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
- ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
- options:
- lambda1: 0.01
- - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
- ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
- ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
- options:
- lambda1: 0.01
- lambda2: 0.005
- use_cholesky: True
- LSH:
- run: ['metric']
- script: methods/mlpack/lsh.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- KMEANS:
- run: ['metric']
- script: methods/mlpack/kmeans.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
- ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
- ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
- ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
- options:
- clusters: 10
- - files: [ ['datasets/1000000-10-randu.csv'] ]
- options:
- clusters: 75
- ALLKNN:
- run: ['metric']
- script: methods/mlpack/allknn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 4
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.05
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.10
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.15
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.20
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.25
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- single_mode: True
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- tree_type: cover
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- tree_type: cover
- single_mode: True
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- naive_mode: True
- ALLKFN:
- run: ['metric']
- script: methods/mlpack/allkfn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- single_mode: True
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- naive_mode: True
- ALLKRANN:
- run: ['metric']
- script: methods/mlpack/allkrann.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- tau: 10
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- tau: 10
- naive_mode: True
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- tau: 10
- single_mode: True
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- tau: 10
- sample_at_leaves: True
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- tau: 10
- first_leaf_exact: True
- RANGESEARCH:
- run: ['metric']
- script: methods/mlpack/range_search.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/cloud.csv', 'datasets/vehicle.csv',
- 'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/Twitter.csv']
- options:
- max: 0.02
- - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/cloud.csv', 'datasets/vehicle.csv',
- 'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/Twitter.csv']
- options:
- max: 0.02
- naive_mode: True
- - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/cloud.csv', 'datasets/vehicle.csv',
- 'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/Twitter.csv']
- options:
- max: 0.02
- single_mode: True
- GMM:
- run: ['metric']
- script: methods/mlpack/gmm.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
- 'datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
- 'datasets/optdigits.csv', 'datasets/isolet.csv',
- 'datasets/TomsHardware.csv', 'datasets/covtype.csv']
- options:
- gaussians: 3
- seed: 42
- - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
- 'datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
- 'datasets/optdigits.csv', 'datasets/isolet.csv',
- 'datasets/TomsHardware.csv', 'datasets/covtype.csv']
- options:
- gaussians: 3
- seed: 42
- no_force_positive: True
- DET:
- run: ['metric']
- script: methods/mlpack/det.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/cloud.csv',
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
- - files: ['datasets/iris.csv', 'datasets/cloud.csv',
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
- options:
- folds: 20
- EMST:
- run: ['metric']
- script: methods/mlpack/emst.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/vehicle.csv',
- 'datasets/waveform.csv', 'datasets/corel-histogram.csv',
- 'datasets/isolet.csv', 'datasets/tinyImages100k.csv']
- - files: ['datasets/iris.csv', 'datasets/vehicle.csv',
- 'datasets/waveform.csv']
- options:
- naive_mode: True
- LinearRegression:
- run: ['metric']
- script: methods/mlpack/linear_regression.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
- ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
- ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- LocalCoordinateCoding:
- run: ['metric']
- script: methods/mlpack/local_coordinate_coding.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- normalize: True
- SparseCoding:
- run: ['metric']
- script: methods/mlpack/sparse_coding.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- max_iterations: 100
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- normalize: True
- FastMKS:
- run: ['metric']
- script: methods/mlpack/fastmks.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/optdigits.csv']
- options:
- k: 1
- kernel: linear
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- kernel: linear
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- single_mode: True
- kernel: linear
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- kernel: polynomial
- degree: 10
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- kernel: hyptan
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- kernel: cosine
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- kernel: gaussian
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- kernel: epanechnikov
- - files: ['datasets/optdigits.csv']
- options:
- k: 10
- kernel: triangular
- NCA:
- run: ['metric']
- script: methods/mlpack/nca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- max_iterations: 2000
- optimizer: sgd
- seed: 42
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- max_iterations: 2000
- optimizer: lbfgs
- seed: 42
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- max_iterations: 2000
- optimizer: lbfgs
- seed: 42
- wolfe: 0.5
- - files: ['datasets/iris_train.csv', ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/shuttle_train.csv', 'datasets/madelon_train.csv']
- options:
- max_iterations: 2000
- optimizer: lbfgs
- seed: 42
- wolfe: 0.5
- num_basis: 5
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- max_iterations: 2000
- optimizer: lbfgs
- seed: 42
- num_basis: 5
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- max_iterations: 2000
- normalize: True
- seed: 42
- LMNN:
- run: ['metric']
- script: methods/mlpack/lmnn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
- options:
- passes: 10
- range: 25
- seed: 42
- - files: ['datasets/letter_recognition.csv',
- 'datasets/shuttle_train.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/corel-histogram.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv']
- options:
- passes: 3
- range: 100
- seed: 42
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
- options:
- passes: 5
- optimizer: bbsgd
- seed: 42
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
- options:
- passes: 5
- optimizer: sgd
- range: 50
- step_size: 1e-07
- seed: 42
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
- options:
- num_targets: 5
- max_iterations: 2000
- optimizer: lbfgs
- seed: 42
- wolfe: 0.5
- range: 50
- - files: ['datasets/covtype.csv',
- 'datasets/shuttle_train.csv', 'datasets/isolet.csv',
- 'datasets/mnist_all.csv']
- options:
- max_iterations: 2000
- optimizer: lbfgs
- seed: 42
- range: 100
- HMMTRAIN:
- run: ['metric']
- script: methods/mlpack/hmm_train.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/artificial_2DSignal.csv']
- options:
- type: gaussian
- states: 20
- seed: 42
- - files: ['datasets/artificial_1DSignal.csv']
- options:
- type: discrete
- states: 20
- seed: 42
- HMMGENERATE:
- run: ['metric']
- script: methods/mlpack/hmm_generate.py
- format: [csv, txt, xml]
- datasets:
- - files: ['datasets/artificial_2DSignal_hmm.xml']
- options:
- length: 10000
- HMMLOGLIK:
- run: ['metric']
- script: methods/mlpack/hmm_loglik.py
- format: [csv, txt, xml]
- datasets:
- - files: [ ['datasets/artificial_2DSignal.csv', 'datasets/artificial_2DSignal_hmm.xml'] ]
- HMMVITERBI:
- run: ['metric']
- iteration: 3
- script: methods/mlpack/hmm_viterbi.py
- format: [csv, txt, xml]
- datasets:
- - files: [ ['datasets/artificial_2DSignal.csv', 'datasets/artificial_2DSignal_hmm.xml'] ]
- ---
- # MATLAB:
- # Numerical computing environment and programming language.
- # Requires Machine Learning and statistics toolbox installed.
- library: matlab
- methods:
- PCA:
- run: ['metric']
- iteration: 3
- script: methods/matlab/pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- scaled: True
- PERCEPTRON:
- run: ['metric']
- script: methods/matlab/perceptron.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- max_iterations: 10000
- SVC:
- run: ['metric']
- script: methods/matlab/svc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- NMF:
- run: ['metric']
- iteration: 3
- script: methods/matlab/nmf.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
- 'datasets/optdigits.csv', 'datasets/waveform.csv',
- 'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
- 'datasets/isolet.csv', 'datasets/mnist_all.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- rank: 6
- seed: 42
- update_rules: multdist
- KMEANS:
- run: ['metric']
- iteration: 3
- script: methods/matlab/kmeans.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
- ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
- ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
- ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
- options:
- clusters: 10
- - files: [ ['datasets/1000000-10-randu.csv'] ]
- options:
- clusters: 75
- NBC:
- run: ['metric']
- iteration: 3
- script: methods/matlab/nbc.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- ALLKNN:
- run: ['metric']
- iteration: 3
- script: methods/matlab/allknn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- naive_mode: True
- RANGESEARCH:
- run: ['metric']
- iteration: 3
- script: methods/matlab/range_search.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/cloud.csv', 'datasets/vehicle.csv',
- 'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/Twitter.csv']
- options:
- max: 0.02
- LinearRegression:
- run: ['metric']
- iteration: 3
- script: methods/matlab/linear_regression.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
- ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
- ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- HMMGENERATE:
- run: ['metric']
- iteration: 3
- script: methods/matlab/hmm_generate.py
- format: [csv, txt, xml]
- datasets:
- - files: ['datasets/artificial_2DSignal_hmm.xml']
- options:
- length: 10000
- LogisticRegression:
- run: ['metric']
- script: methods/matlab/logistic_regression.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- HMMVITERBI:
- run: ['metric']
- iteration: 3
- script: methods/matlab/hmm_viterbi.py
- format: [csv, txt, xml]
- datasets:
- - files: [ ['datasets/artificial_2DSignal.csv', 'datasets/artificial_2DSignal_hmm.xml'] ]
- DTC:
- run: ['metric']
- script: methods/matlab/dtc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- KNC:
- run: ['metric']
- script: methods/matlab/knc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- k: 5
- LDA:
- run: ['metric']
- script: methods/matlab/lda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- QDA:
- run: ['metric']
- script: methods/matlab/qda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- SVR:
- run: ['metric']
- iteration: 3
- script: methods/scikit/svr.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes.csv'],
- ['datasets/cosExp.csv'],
- ['datasets/TomsHardware.csv']]
- RANDOMFOREST:
- run: ['metric']
- script: methods/scikit/random_forest.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- num_trees: 50
- ---
- # Scikit-Learn: machine learning in Python
- library: scikit
- methods:
- ICA:
- run: ['metric']
- iteration: 3
- script: methods/scikit/ica.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv']
- PCA:
- run: ['metric']
- iteration: 3
- script: methods/scikit/pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- whiten: True
- PERCEPTRON:
- run: ['metric']
- script: methods/scikit/perceptron.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- max_iterations: 10000
- ADABOOST:
- run: ['metric']
- script: methods/scikit/adaboost.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- DTC:
- run: ['metric']
- script: methods/scikit/dtc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- ElasticNet:
- run: ['metric']
- script: methods/scikit/elastic_net.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- KNC:
- run: ['metric']
- script: methods/scikit/knc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- k: 5
- QDA:
- run: ['metric']
- script: methods/scikit/qda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- RANDOMFOREST:
- run: ['metric']
- script: methods/scikit/random_forest.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- num_trees: 50
- max_depth: 10
- fitness_function: entropy
- minimum_samples_split: 4
- minimum_leaf_size: 2
- num_jobs: 2
- SVM:
- run: ['metric']
- script: methods/scikit/svm.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LDA:
- run: ['metric']
- script: methods/scikit/lda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- NMF:
- run: ['metric']
- iteration: 3
- script: methods/scikit/nmf.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
- 'datasets/optdigits.csv', 'datasets/waveform.csv',
- 'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
- 'datasets/isolet.csv', 'datasets/mnist_all.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- rank: 6
- KMEANS:
- run: ['metric']
- iteration: 3
- script: methods/scikit/kmeans.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
- ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
- ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
- ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
- options:
- clusters: 10
- - files: [ ['datasets/1000000-10-randu.csv'] ]
- options:
- centroids: 75
- NBC:
- run: ['metric']
- iteration: 3
- script: methods/scikit/nbc.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
- ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
- KPCA:
- run: ['metric']
- iteration: 3
- script: methods/scikit/kernel_pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: linear
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: polynomial
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: hyptan
- ANN:
- run: ['metric']
- script: methods/scikit/LSHForest.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LARS:
- run: ['metric']
- iteration: 3
- script: methods/scikit/lars.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
- ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
- ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
- options:
- lambda1: 0.01
- LASSO:
- run: ['metric']
- iteration: 3
- script: methods/scikit/lasso.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
- ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
- ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
- # script does not accept any options currently
- # options: '-l 0.01'
- SVR:
- run: ['metric']
- iteration: 3
- script: methods/scikit/svr.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes.csv'],
- ['datasets/cosExp.csv'],
- ['datasets/TomsHardware.csv']]
- options:
- c: 1.0
- epsilon: 1.0
- gamma: 0.1
- ALLKNN:
- run: ['metric']
- iteration: 3
- script: methods/scikit/allknn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3 # random seed cannot be set
- GMM:
- run: ['metric']
- iteration: 3
- script: methods/scikit/gmm.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
- 'datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
- 'datasets/optdigits.csv', 'datasets/isolet.csv',
- 'datasets/TomsHardware.csv', 'datasets/covtype.csv']
- options:
- gaussians: 3
- LinearRegression:
- run: ['metric']
- iteration: 3
- script: methods/scikit/linear_regression.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
- ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
- ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- SparseCoding:
- run: ['metric']
- iteration: 3
- script: methods/scikit/sparse_coding.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- max_iterations: 100
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- - files: ['datasets/pendigits.csv']
- options:
- atoms: 12
- seed: 42
- normalize: True
- LinearRidgeRegression:
- run: ['metric']
- iteration: 3
- script: methods/scikit/linear_ridge_regression.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'] ]
- options:
- alpha: 1.0
- - files: [ ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'] ]
- options:
- alpha: 5.0
- - files: [ ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'] ]
- options:
- alpha: 50.0
- LogisticRegression:
- run: ['metric']
- iteration: 3
- script: methods/scikit/logistic_regression.py
- format: [csv,txt]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- ---
- # mlpy is a Python module for Machine Learning built on top of NumPy/SciPy
- # and the GNU Scientific Libraries.
- library: mlpy
- methods:
- PCA:
- run: ['metric']
- iteration: 3
- script: methods/mlpy/pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- whiten: True
- KMEANS:
- run: ['metric']
- iteration: 3
- script: methods/mlpy/kmeans.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
- ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
- ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
- ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
- options:
- clusters: 10
- - files: [ ['datasets/1000000-10-randu.csv'] ]
- options:
- clusters: 75
- ElasticNet:
- run: ['metric']
- script: methods/mlpy/elastic_net.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- KNC:
- run: ['metric']
- script: methods/mlpy/knc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- k: 5
- DECISIONTREE:
- run: ['metric']
- script: methods/mlpy/decision_tree.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv','datasets/scene_test.csv','datasets/scene_labels.csv'] ]
- options:
- stumps: 10
- minimum_leaf_size: 10
- - files: [ ['datasets/iris_train.csv','datasets/iris_test.csv','datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv','datasets/oilspill_test.csv','datasets/oilspill_labels.csv'] ]
- LDA:
- run: ['metric']
- script: methods/mlpy/lda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- PERCEPTRON:
- run: ['metric']
- script: methods/mlpy/perceptron.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- max_iterations: 10000
- SVM:
- run: ['metric']
- script: methods/mlpy/svm.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- Golub:
- run: ['metric']
- script: methods/mlpy/golub.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- KPCA:
- run: ['metric']
- iteration: 3
- script: methods/mlpy/kernel_pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: linear
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: gaussian
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: hyptan
- LARS:
- run: ['metric']
- iteration: 3
- script: methods/mlpy/lars.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
- ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
- ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
- # TODO: add support for lambda to mlpy LARS
- # options: '-l 0.01'
- ALLKNN:
- run: ['metric']
- iteration: 3
- script: methods/mlpy/allknn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3 # random seed cannot be specified
- LinearRegression:
- run: ['metric']
- iteration: 3
- script: methods/mlpy/linear_regression.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
- ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
- ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- ---
- # Shogun - A Large Scale Machine Learning Toolbox
- library: shogun
- methods:
- PCA:
- run: ['metric']
- iteration: 3
- script: methods/shogun/pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- whiten: True
- RANDOMFOREST:
- run: ['timing', 'metric']
- script: methods/shogun/random_forest.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- num_trees: 50
- PERCEPTRON:
- run: ['metric']
- script: methods/shogun/perceptron.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/optdigits_train.csv', 'datasets/optdigits_test.csv', 'datasets/optdigits_labels.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- options:
- max_iterations: 10000
- KMEANS:
- run: ['metric']
- iteration: 3
- script: methods/shogun/kmeans.py
- format: [arff, csv, txt]
- datasets:
- - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
- ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
- ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
- ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
- options:
- clusters: 10
- - files: [ ['datasets/1000000-10-randu.csv'] ]
- options:
- clusters: 75
- KPCA:
- run: ['metric']
- iteration: 3
- script: methods/shogun/kernel_pca.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: linear
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: linear
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: polynomial
- - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
- 'datasets/abalone.csv', 'datasets/bank8FM.csv',
- 'datasets/waveform.csv', 'datasets/TomsHardware.csv',
- 'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
- 'datasets/pendigits.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv']
- options:
- kernel: hyptan
- NBC:
- run: ['metric']
- iteration: 3
- script: methods/shogun/nbc.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
- ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
- ALLKNN:
- run: ['metric']
- iteration: 3
- script: methods/shogun/allknn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- GMM:
- run: ['metric']
- iteration: 3
- script: methods/shogun/gmm.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
- 'datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
- 'datasets/optdigits.csv', 'datasets/isolet.csv',
- 'datasets/TomsHardware.csv', 'datasets/covtype.csv']
- options:
- gaussians: 3
- LinearRegression:
- run: ['metric']
- iteration: 3
- script: methods/shogun/linear_regression.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
- ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
- ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- LASSO:
- run: ['metric']
- iteration: 3
- script: methods/shogun/lasso.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
- ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
- ['datasets/madelon_X.csv', 'datasets/madelon_y.csv']]
- options:
- lambda1: 0.01
- LMNN:
- run: ['metric']
- script: methods/shogun/lmnn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/iris_train.csv',
- ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- 'datasets/wine.csv', 'datasets/ionosphere.csv',
- 'datasets/shuttle_train.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/corel-histogram.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
- QDA:
- run: ['metric','metric']
- script: methods/shogun/qda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LogisticRegression:
- run: ['metric','metric']
- script: methods/shogun/logistic_regression.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LinearRidgeRegression:
- run: ['metric']
- iteration: 3
- script: methods/shogun/linear_ridge_regression.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'] ]
- options:
- alpha: 1.0
- - files: [ ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'] ]
- options:
- alpha: 5.0
- - files: [ ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'] ]
- options:
- alpha: 50.0
- SVR:
- run: ['metric']
- iteration: 3
- script: methods/shogun/svr.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes.csv'],
- ['datasets/cosExp.csv'],
- ['datasets/TomsHardware.csv']]
- options:
- c: 1.0
- epsilon: 1.0
- gamma: 0.1
- KNC:
- run: ['timing', 'metric']
- script: methods/shogun/knc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- k: 5
- DTC:
- run: ['timing', 'metric']
- script: methods/shogun/decision_tree.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LDA:
- run: ['metric']
- script: methods/shogun/lda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- ---
- # Weka: Data Mining Software in Java
- library: weka
- methods:
- PCA:
- run: ['metric']
- iteration: 3
- script: methods/weka/pca.py
- format: [arff]
- datasets:
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- - files: ['datasets/iris.csv', 'datasets/wine.csv',
- 'datasets/cities.csv', 'datasets/diabetes_X.csv',
- 'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
- 'datasets/bank8FM.csv', 'datasets/faces.csv',
- 'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
- 'datasets/arcene_X.csv','datasets/madelon_X.csv',
- 'datasets/corel-histogram.csv', 'datasets/isolet.csv',
- 'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
- 'datasets/mnist_all.csv', 'datasets/Twitter.csv',
- 'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
- options:
- new_dimensionality: 2
- whiten: True
- KMEANS:
- run: ['metric']
- iteration: 3
- script: methods/weka/kmeans.py
- format: [arff]
- datasets:
- - files: [ ['datasets/waveform.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv'],
- ['datasets/iris.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv'],
- ['datasets/wine_qual.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv'],
- ['datasets/corel-histogram.csv'] ]
- options:
- clusters: 10
- - files: [ ['datasets/1000000-10-randu.csv'] ]
- options:
- clusters: 75
- ALLKNN:
- run: ['metric']
- iteration: 3
- script: methods/weka/allknn.py
- format: [arff]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- LinearRegression:
- run: ['metric']
- iteration: 3
- script: methods/weka/linear_regression.py
- format: [arff]
- datasets:
- - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
- ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
- ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- DTC:
- run: ['metric']
- script: methods/weka/dtc.py
- format: [arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LogisticRegression:
- run: ['metric']
- iteration: 3
- script: methods/weka/logistic_regression.py
- format: [arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- NBC:
- run: ['metric']
- iteration: 3
- script: methods/weka/nbc.py
- format: [arff]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- RANDOMFOREST:
- run: ['metric']
- script: methods/weka/random_forest.py
- format: [arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- PERCEPTRON:
- run: ['metric']
- script: methods/weka/perceptron.py
- format: [arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- ---
- # ANN:
- # A Library for Approximate Nearest Neighbor Searching
- library: ann
- methods:
- ALLKNN:
- run: ['metric']
- script: methods/ann/allknn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.05
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.10
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.15
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.20
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.25
- ---
- # FLANN:
- # A Library for Fast Library for Approximate Nearest Neighbors
- library: flann
- methods:
- ALLKNN:
- run: ['metric']
- script: methods/flann/allknn.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- seed: 42
- epsilon: 0.0
- ---
- # MRPT: fast nearest neighbor search with random projection
- library: mrpt
- methods:
- ANN:
- run: ['metric']
- script: methods/mrpt/ann.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- k: 10
- num_trees: 10
- ---
- # Annoy: Approximate Nearest Neighbors Oh Yeah
- library: annoy
- methods:
- ANN:
- run: ['metric']
- script: methods/annoy/ann.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- k: 10
- trees: 10
- ---
- # Nearpy
- library: nearpy
- methods:
- ANN:
- run: ['metric']
- script: methods/nearpy/ann.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- ---
- # Milk Machine Learning Toolkit for Python
- library: milk
- methods:
- KMEANS:
- run: ['metric']
- script: methods/milk/kmeans.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
- ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
- ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
- ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
- options:
- clusters: 10
- RANDOMFOREST:
- run: ['timing', 'metric']
- script: methods/milk/random_forest.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- ADABOOST:
- run: ['metric']
- script: methods/milk/adaboost.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- DTC:
- run: ['metric']
- script: methods/milk/dtc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- PERCEPTRON:
- run: ['metric']
- script: methods/milk/perceptron.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LogisticRegression:
- run: ['metric','metric']
- script: methods/milk/logistic_regression.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'] ]
- ---
- # R
- library: R
- methods:
- NBC:
- run: ['metric']
- script: methods/R/nbc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv']]
- ADABOOST:
- run: ['metric']
- script: methods/R/adaboost.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- QDA:
- run: ['metric']
- script: methods/R/qda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- DTC:
- run: ['metric']
- script: methods/R/dtc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- KNC:
- run: ['metric']
- script: methods/R/knc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- k: 5
- RANDOMFOREST:
- run: ['metric']
- script: methods/R/random_forest.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- options:
- num_trees: 50
- SVC:
- run: ['metric']
- script: methods/R/svc.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LDA:
- run: ['metric']
- script: methods/R/lda.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
- LASSO:
- run: ['metric']
- iteration: 3
- script: methods/R/lasso.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
- ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
- ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
- ['datasets/madelon_X.csv', 'datasets/madelon_y.csv']]
- options:
- lambda1: 0.01
- LinearRegression:
- run: ['metric']
- iteration: 3
- script: methods/R/linear_regression.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
- ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
- ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
- ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
- ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
- SVR:
- run: ['metric']
- iteration: 3
- script: methods/scikit/svr.py
- format: [csv, txt]
- datasets:
- - files: [ ['datasets/diabetes.csv'],
- ['datasets/cosExp.csv'],
- ['datasets/TomsHardware.csv']]
- options:
- c: 1.0
- epsilon: 1.0
- gamma: 0.1
- ---
- # dlibml
- library: dlibml
- methods:
- ANN:
- run: ['metric']
- script: methods/dlibml/ANN.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- num: 10000
- sample_pct: 0.5
- ALLKNN:
- run: ['metric']
- iteration: 3
- script: methods/dlibml/ALLKNN.py
- format: [csv, txt]
- datasets:
- - files: ['datasets/wine.csv', 'datasets/cloud.csv',
- 'datasets/wine_qual.csv', 'datasets/isolet.csv',
- 'datasets/corel-histogram.csv', 'datasets/covtype.csv',
- 'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
- 'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
- options:
- k: 3
- KMEANS:
- run: ['metric']
- script: methods/dlibml/KMEANS.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
- options:
- clusters: 2
- - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
- ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
- options:
- clusters: 3
- - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
- options:
- clusters: 5
- - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
- options:
- clusters: 6
- - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
- ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
- options:
- clusters: 7
- - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
- options:
- clusters: 26
- - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
- ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
- options:
- clusters: 10
- - files: [ ['datasets/1000000-10-randu.csv'] ]
- options:
- clusters: 75
- SVM:
- run: ['metric']
- script: methods/dlibml/SVM.py
- format: [csv, txt, arff]
- datasets:
- - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
- ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
- ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
- ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
- ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
- ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
- ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
- ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
- ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
- ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
- ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
- ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
Add Comment
Please, Sign In to add comment