Guest User

Untitled

a guest
Jun 15th, 2018
64
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
YAML 179.79 KB | None | 0 0
  1. # Block for general settings.
  2. library: general
  3. settings:
  4.    # Time until a timeout in seconds.
  5.     timeout: 9000
  6.     # databaseHost: 'localhost'
  7.     # port: 3306
  8.     database: 'benchmark.db'
  9.     driver : 'sqlite'
  10.     keepReports: 20
  11.     bootstrap: 10
  12.     libraries: ['mlpack', 'shogun', 'weka', 'scikit', 'mlpy', 'flann', 'ann', 'annoy', 'mrpt', 'dlibml']
  13.     version: ['HEAD', '3.2.0', '3.6.11', '0.15.1', '3.5.0', '1.8.4', '1.1.2', '1.8.3', '0.1', '19.4']
  14. ---
  15. #  MLPACK:
  16. #  A Scalable C++  Machine Learning Library
  17. library: mlpack
  18. methods:
  19.     DTC:
  20.        run: ['metric']
  21.        script: methods/mlpack/decision_tree.py
  22.        format: [csv, txt, arff]
  23.        datasets:
  24.            - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  25.                       ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  26.                       ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  27.                       ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  28.                       ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  29.                       ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  30.                       ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  31.                       ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  32.                       ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  33.                       ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  34.                       ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  35.                       ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  36.  
  37.     PCA:
  38.         run: ['metric']
  39.         script: methods/mlpack/pca.py
  40.         format: [csv, txt]
  41.         datasets:
  42.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  43.                       'datasets/cities.csv', 'datasets/diabetes_X.csv']
  44.  
  45.     PERCEPTRON:
  46.         run: ['metric']
  47.         script: methods/mlpack/perceptron.py
  48.         format: [csv, txt, arff]
  49.         datasets:
  50.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  51.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  52.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  53.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  54.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  55.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  56.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  57.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  58.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  59.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  60.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  61.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  62.               options:
  63.                 max_iterations: 10000
  64.  
  65.     DecisionStump:
  66.         run: ['metric']
  67.         script: methods/mlpack/decision_stump.py
  68.         format: [csv, txt]
  69.         datasets:
  70.             - files: [ ['datasets/dexter_train.csv', 'datasets/dexter_test.csv'],
  71.                        ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
  72.                        ['datasets/optdigits_train.csv', 'datasets/optdigits_test.csv'],
  73.                        ['datasets/shuttle_train.csv', 'datasets/shuttle_test.csv'],
  74.                        ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
  75.                        ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  76.  
  77.     NMF:
  78.         run: ['metric']
  79.         script: methods/mlpack/nmf.py
  80.         format: [csv, txt]
  81.         datasets:
  82.             - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
  83.                       'datasets/optdigits.csv', 'datasets/waveform.csv',
  84.                       'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
  85.                       'datasets/isolet.csv', 'datasets/mnist_all.csv',
  86.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  87.               options:
  88.                 rank: 6
  89.                 seed: 42
  90.                 update_rules: multdist
  91.  
  92.             - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
  93.                       'datasets/optdigits.csv', 'datasets/waveform.csv',
  94.                       'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
  95.                       'datasets/isolet.csv', 'datasets/mnist_all.csv',
  96.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  97.               options:
  98.                 rank: 6
  99.                 seed: 42
  100.                 update_rules: multdiv
  101.  
  102.             - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
  103.                       'datasets/optdigits.csv', 'datasets/waveform.csv',
  104.                       'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
  105.                       'datasets/isolet.csv', 'datasets/mnist_all.csv',
  106.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  107.               options:
  108.                 rank: 6
  109.                 seed: 42
  110.                 update_rules: als
  111.     NBC:
  112.         run: ['metric']
  113.         script: methods/mlpack/nbc.py
  114.         format: [csv, txt]
  115.         datasets:
  116.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
  117.                        ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
  118.                        ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
  119.  
  120.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
  121.                        ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
  122.                        ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
  123.               options:
  124.                 incremental: True
  125.     KPCA:
  126.         run: ['metric']
  127.         script: methods/mlpack/kernel_pca.py
  128.         format: [csv, txt]
  129.         datasets:
  130.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  131.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  132.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  133.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  134.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  135.                       'datasets/covtype.csv']
  136.               options:
  137.                 kernel: linear
  138.  
  139.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  140.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  141.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  142.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  143.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  144.                       'datasets/covtype.csv']
  145.               options:
  146.                 kernel: gaussian
  147.  
  148.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  149.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  150.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  151.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  152.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  153.                       'datasets/covtype.csv']
  154.               options:
  155.                 kernel: polynomial
  156.  
  157.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  158.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  159.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  160.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  161.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  162.                       'datasets/covtype.csv']
  163.               options:
  164.                 kernel: hyptan
  165.  
  166.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  167.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  168.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  169.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  170.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  171.                       'datasets/covtype.csv']
  172.               options:
  173.                 kernel: laplacian
  174.  
  175.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  176.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  177.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  178.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  179.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  180.                       'datasets/covtype.csv']
  181.               options:
  182.                 kernel: cosine
  183.  
  184.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  185.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  186.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  187.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  188.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  189.                       'datasets/covtype.csv']
  190.               options:
  191.                 kernel: gaussian
  192.                 nystroem: true
  193.                 sampling_scheme: kmeans
  194.  
  195.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  196.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  197.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  198.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  199.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  200.                       'datasets/covtype.csv']
  201.               options:
  202.                 kernel: polynomial
  203.                 nystroem: true
  204.                 sampling_scheme: kmeans
  205.  
  206.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  207.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  208.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  209.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  210.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  211.                       'datasets/covtype.csv']
  212.               options:
  213.                 kernel: cosine
  214.                 nystroem: true
  215.                 sampling_scheme: kmeans
  216.  
  217.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  218.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  219.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  220.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  221.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  222.                       'datasets/covtype.csv']
  223.               options:
  224.                 kernel: gaussian
  225.                 nystroem: true
  226.                 sampling_scheme: random
  227.  
  228.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  229.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  230.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  231.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  232.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  233.                       'datasets/covtype.csv']
  234.               options:
  235.                 kernel: polynomial
  236.                 nystroem: true
  237.                 sampling_scheme: random
  238.  
  239.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  240.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  241.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  242.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  243.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  244.                       'datasets/covtype.csv']
  245.               options:
  246.                 kernel: cosine
  247.                 nystroem: true
  248.                 sampling_scheme: random
  249.  
  250.     LARS:
  251.           run: ['metric']
  252.           script: methods/mlpack/lars.py
  253.           format: [csv, txt]
  254.           datasets:
  255.               - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  256.                          ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
  257.                          ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
  258.                          ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
  259.                 options:
  260.                   lambda1: 0.01
  261.  
  262.               - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  263.                          ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
  264.                          ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
  265.                          ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
  266.                 options:
  267.                   lambda1: 0.01
  268.                   lambda2: 0.005
  269.                   use_cholesky: True
  270.  
  271.     LSH:
  272.         run: ['metric']
  273.         script: methods/mlpack/lsh.py
  274.         format: [csv, txt]
  275.         datasets:
  276.          - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  277.                    'datasets/wine_qual.csv', 'datasets/isolet.csv',
  278.                    'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  279.                    'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  280.                    'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  281.            options:
  282.               k: 3
  283.               seed: 42
  284.  
  285.     KMEANS:
  286.         run: ['metric']
  287.         script: methods/mlpack/kmeans.py
  288.         format: [csv, txt, arff]
  289.         datasets:
  290.             - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
  291.               options:
  292.                 clusters: 2
  293.  
  294.             - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
  295.                        ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
  296.               options:
  297.                 clusters: 3
  298.  
  299.             - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
  300.               options:
  301.                 clusters: 5
  302.  
  303.             - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
  304.               options:
  305.                 clusters: 6
  306.  
  307.             - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
  308.                        ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
  309.               options:
  310.                 clusters: 7
  311.  
  312.             - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
  313.               options:
  314.                 clusters: 26
  315.  
  316.             - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
  317.                        ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
  318.               options:
  319.                 clusters: 10
  320.  
  321.             - files: [ ['datasets/1000000-10-randu.csv'] ]
  322.               options:
  323.                 clusters: 75
  324.  
  325.     ALLKNN:
  326.         run: ['metric']
  327.         script: methods/mlpack/allknn.py
  328.         format: [csv, txt]
  329.         datasets:
  330.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  331.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  332.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  333.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  334.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  335.               options:
  336.                 k: 3
  337.  
  338.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  339.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  340.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  341.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  342.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  343.               options:
  344.                 k: 4
  345.  
  346.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  347.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  348.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  349.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  350.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  351.               options:
  352.                 k: 3
  353.                 seed: 42
  354.                 epsilon: 0.0
  355.  
  356.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  357.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  358.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  359.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  360.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  361.               options:
  362.                 k: 3
  363.                 seed: 42
  364.                 epsilon: 0.05
  365.  
  366.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  367.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  368.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  369.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  370.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  371.               options:
  372.                 k: 3
  373.                 seed: 42
  374.                 epsilon: 0.10
  375.  
  376.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  377.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  378.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  379.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  380.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  381.               options:
  382.                 k: 3
  383.                 seed: 42
  384.                 epsilon: 0.15
  385.  
  386.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  387.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  388.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  389.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  390.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  391.               options:
  392.                 k: 3
  393.                 seed: 42
  394.                 epsilon: 0.20
  395.  
  396.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  397.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  398.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  399.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  400.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  401.               options:
  402.                 k: 3
  403.                 seed: 42
  404.                 epsilon: 0.25
  405.  
  406.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  407.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  408.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  409.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  410.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  411.               options:
  412.                 k: 3
  413.                 seed: 42
  414.                 single_mode: True
  415.  
  416.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  417.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  418.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  419.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  420.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  421.               options:
  422.                 k: 3
  423.                 seed: 42
  424.                 tree_type: cover
  425.  
  426.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  427.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  428.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  429.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  430.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  431.               options:
  432.                 k: 3
  433.                 seed: 42
  434.                 tree_type: cover
  435.                 single_mode: True
  436.  
  437.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  438.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  439.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  440.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  441.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  442.               options:
  443.                 k: 3
  444.                 seed: 42
  445.                 naive_mode: True
  446.  
  447.     ALLKFN:
  448.         run: ['metric']
  449.         script: methods/mlpack/allkfn.py
  450.         format: [csv, txt]
  451.         datasets:
  452.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  453.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  454.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  455.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  456.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  457.               options:
  458.                 k: 3
  459.  
  460.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  461.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  462.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  463.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  464.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  465.               options:
  466.                 k: 3
  467.                 single_mode: True
  468.  
  469.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  470.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  471.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  472.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  473.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  474.               options:
  475.                 k: 3
  476.                 naive_mode: True
  477.  
  478.     ALLKRANN:
  479.         run: ['metric']
  480.         script: methods/mlpack/allkrann.py
  481.         format: [csv, txt]
  482.         datasets:
  483.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  484.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  485.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  486.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  487.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  488.               options:
  489.                 k: 3
  490.                 tau: 10
  491.  
  492.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  493.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  494.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  495.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  496.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  497.               options:
  498.                 k: 3
  499.                 tau: 10
  500.                 naive_mode: True
  501.  
  502.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  503.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  504.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  505.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  506.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  507.               options:
  508.                 k: 3
  509.                 tau: 10
  510.                 single_mode: True
  511.  
  512.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  513.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  514.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  515.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  516.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  517.               options:
  518.                 k: 3
  519.                 tau: 10
  520.                 sample_at_leaves: True
  521.  
  522.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  523.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  524.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  525.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  526.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  527.               options:
  528.                 k: 3
  529.                 tau: 10
  530.                 first_leaf_exact: True
  531.     RANGESEARCH:
  532.         run: ['metric']
  533.         script: methods/mlpack/range_search.py
  534.         format: [csv, txt]
  535.         datasets:
  536.             - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
  537.                       'datasets/cloud.csv', 'datasets/vehicle.csv',
  538.                       'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
  539.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  540.                       'datasets/covtype.csv', 'datasets/Twitter.csv']
  541.               options:
  542.                 max: 0.02
  543.  
  544.             - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
  545.                       'datasets/cloud.csv', 'datasets/vehicle.csv',
  546.                       'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
  547.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  548.                       'datasets/covtype.csv', 'datasets/Twitter.csv']
  549.               options:
  550.                 max: 0.02
  551.                 naive_mode: True
  552.  
  553.             - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
  554.                       'datasets/cloud.csv', 'datasets/vehicle.csv',
  555.                       'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
  556.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  557.                       'datasets/covtype.csv', 'datasets/Twitter.csv']
  558.               options:
  559.                 max: 0.02
  560.                 single_mode: True
  561.     GMM:
  562.         run: ['metric']
  563.         script: methods/mlpack/gmm.py
  564.         format: [csv, txt]
  565.         datasets:
  566.             - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
  567.                       'datasets/iris.csv', 'datasets/wine.csv',
  568.                       'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
  569.                       'datasets/optdigits.csv', 'datasets/isolet.csv',
  570.                       'datasets/TomsHardware.csv', 'datasets/covtype.csv']
  571.               options:
  572.                 gaussians: 3
  573.                 seed: 42
  574.  
  575.             - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
  576.                       'datasets/iris.csv', 'datasets/wine.csv',
  577.                       'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
  578.                       'datasets/optdigits.csv', 'datasets/isolet.csv',
  579.                       'datasets/TomsHardware.csv', 'datasets/covtype.csv']
  580.               options:
  581.                 gaussians: 3
  582.                 seed: 42
  583.                 no_force_positive: True
  584.     DET:
  585.         run: ['metric']
  586.         script: methods/mlpack/det.py
  587.         format: [csv, txt]
  588.         datasets:
  589.             - files: ['datasets/iris.csv', 'datasets/cloud.csv',
  590.                      ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
  591.  
  592.             - files: ['datasets/iris.csv', 'datasets/cloud.csv',
  593.                      ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
  594.               options:
  595.                 folds: 20
  596.  
  597.     EMST:
  598.         run: ['metric']
  599.         script: methods/mlpack/emst.py
  600.         format: [csv, txt]
  601.         datasets:
  602.             - files: ['datasets/iris.csv', 'datasets/vehicle.csv',
  603.                       'datasets/waveform.csv', 'datasets/corel-histogram.csv',
  604.                       'datasets/isolet.csv', 'datasets/tinyImages100k.csv']
  605.  
  606.             - files: ['datasets/iris.csv', 'datasets/vehicle.csv',
  607.                       'datasets/waveform.csv']
  608.               options:
  609.                 naive_mode: True
  610.  
  611.     LinearRegression:
  612.         run: ['metric']
  613.         script: methods/mlpack/linear_regression.py
  614.         format: [csv, txt]
  615.         datasets:
  616.              - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
  617.                         ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
  618.                         ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
  619.                         ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  620.                         ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  621.  
  622.     LocalCoordinateCoding:
  623.         run: ['metric']
  624.         script: methods/mlpack/local_coordinate_coding.py
  625.         format: [csv, txt]
  626.         datasets:
  627.             - files: ['datasets/pendigits.csv']
  628.               options:
  629.                 atoms: 12
  630.                 seed: 42
  631.  
  632.             - files: ['datasets/pendigits.csv']
  633.               options:
  634.                 atoms: 12
  635.                 seed: 42
  636.                 normalize: True
  637.     SparseCoding:
  638.         run: ['metric']
  639.         script: methods/mlpack/sparse_coding.py
  640.         format: [csv, txt]
  641.         datasets:
  642.             - files: ['datasets/pendigits.csv']
  643.               options:
  644.                 atoms: 12
  645.                 seed: 42
  646.                 max_iterations: 100
  647.  
  648.             - files: ['datasets/pendigits.csv']
  649.               options:
  650.                 atoms: 12
  651.                 seed: 42
  652.  
  653.             - files: ['datasets/pendigits.csv']
  654.               options:
  655.                 atoms: 12
  656.                 seed: 42
  657.                 normalize: True
  658.     FastMKS:
  659.         run: ['metric']
  660.         script: methods/mlpack/fastmks.py
  661.         format: [csv, txt]
  662.         datasets:
  663.             - files: ['datasets/optdigits.csv']
  664.               options:
  665.                 k: 1
  666.                 kernel: linear
  667.  
  668.             - files: ['datasets/optdigits.csv']
  669.               options:
  670.                 k: 10
  671.                 kernel: linear
  672.  
  673.             - files: ['datasets/optdigits.csv']
  674.               options:
  675.                 k: 10
  676.                 single_mode: True
  677.                 kernel: linear
  678.  
  679.             - files: ['datasets/optdigits.csv']
  680.               options:
  681.                 k: 10
  682.                 kernel: polynomial
  683.                 degree: 10
  684.  
  685.             - files: ['datasets/optdigits.csv']
  686.               options:
  687.                 k: 10
  688.                 kernel: hyptan
  689.  
  690.             - files: ['datasets/optdigits.csv']
  691.               options:
  692.                 k: 10
  693.                 kernel: cosine
  694.  
  695.             - files: ['datasets/optdigits.csv']
  696.               options:
  697.                 k: 10
  698.                 kernel: gaussian
  699.  
  700.             - files: ['datasets/optdigits.csv']
  701.               options:
  702.                 k: 10
  703.                 kernel: epanechnikov
  704.  
  705.             - files: ['datasets/optdigits.csv']
  706.               options:
  707.                 k: 10
  708.                 kernel: triangular
  709.  
  710.     NCA:
  711.         run: ['metric']
  712.         script: methods/mlpack/nca.py
  713.         format: [csv, txt]
  714.         datasets:
  715.             - files: ['datasets/iris_train.csv',
  716.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  717.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  718.                       'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
  719.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  720.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  721.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  722.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  723.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  724.               options:
  725.                 max_iterations: 2000
  726.                 optimizer: sgd
  727.                 seed: 42
  728.  
  729.             - files: ['datasets/iris_train.csv',
  730.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  731.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  732.                       'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
  733.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  734.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  735.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  736.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  737.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  738.               options:
  739.                 max_iterations: 2000
  740.                 optimizer: lbfgs
  741.                 seed: 42
  742.  
  743.             - files: ['datasets/iris_train.csv',
  744.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  745.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  746.                       'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
  747.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  748.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  749.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  750.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  751.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  752.               options:
  753.                 max_iterations: 2000
  754.                 optimizer: lbfgs
  755.                 seed: 42
  756.                 wolfe: 0.5
  757.  
  758.             - files: ['datasets/iris_train.csv', ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  759.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  760.                       'datasets/shuttle_train.csv', 'datasets/madelon_train.csv']
  761.               options:
  762.                 max_iterations: 2000
  763.                 optimizer: lbfgs
  764.                 seed: 42
  765.                 wolfe: 0.5
  766.                 num_basis: 5
  767.  
  768.             - files: ['datasets/iris_train.csv',
  769.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  770.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  771.                       'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
  772.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  773.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  774.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  775.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  776.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  777.               options:
  778.                 max_iterations: 2000
  779.                 optimizer: lbfgs
  780.                 seed: 42
  781.                 num_basis: 5
  782.  
  783.             - files: ['datasets/iris_train.csv',
  784.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  785.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  786.                       'datasets/shuttle_train.csv', 'datasets/madelon_train.csv',
  787.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  788.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  789.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  790.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  791.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  792.               options:
  793.                 max_iterations: 2000
  794.                 normalize: True
  795.                 seed: 42
  796.  
  797.     LMNN:
  798.         run: ['metric']
  799.         script: methods/mlpack/lmnn.py
  800.         format: [csv, txt]
  801.         datasets:
  802.             - files: ['datasets/iris_train.csv',
  803.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  804.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  805.                       'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
  806.               options:
  807.                 passes: 10
  808.                 range: 25
  809.                 seed: 42
  810.  
  811.             - files: ['datasets/letter_recognition.csv',
  812.                       'datasets/shuttle_train.csv', 'datasets/isolet.csv',
  813.                       'datasets/covtype.csv', 'datasets/corel-histogram.csv',
  814.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv']
  815.               options:
  816.                 passes: 3
  817.                 range: 100
  818.                 seed: 42
  819.  
  820.             - files: ['datasets/iris_train.csv',
  821.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  822.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  823.                       'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
  824.               options:
  825.                 passes: 5
  826.                 optimizer: bbsgd
  827.                 seed: 42
  828.  
  829.             - files: ['datasets/iris_train.csv',
  830.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  831.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  832.                       'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
  833.               options:
  834.                 passes: 5
  835.                 optimizer: sgd
  836.                 range: 50
  837.                 step_size: 1e-07
  838.                 seed: 42
  839.  
  840.             - files: ['datasets/iris_train.csv',
  841.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  842.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  843.                       'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
  844.               options:
  845.                 num_targets: 5
  846.                 max_iterations: 2000
  847.                 optimizer: lbfgs
  848.                 seed: 42
  849.                 wolfe: 0.5
  850.                 range: 50
  851.  
  852.             - files: ['datasets/covtype.csv',
  853.                       'datasets/shuttle_train.csv', 'datasets/isolet.csv',
  854.                       'datasets/mnist_all.csv']
  855.               options:
  856.                 max_iterations: 2000
  857.                 optimizer: lbfgs
  858.                 seed: 42
  859.                 range: 100
  860.  
  861.     HMMTRAIN:
  862.         run: ['metric']
  863.         script: methods/mlpack/hmm_train.py
  864.         format: [csv, txt]
  865.         datasets:
  866.             - files: ['datasets/artificial_2DSignal.csv']
  867.               options:
  868.                 type: gaussian
  869.                 states: 20
  870.                 seed: 42
  871.  
  872.             - files: ['datasets/artificial_1DSignal.csv']
  873.               options:
  874.                 type: discrete
  875.                 states: 20
  876.                 seed: 42
  877.  
  878.     HMMGENERATE:
  879.         run: ['metric']
  880.         script: methods/mlpack/hmm_generate.py
  881.         format: [csv, txt, xml]
  882.         datasets:
  883.             - files: ['datasets/artificial_2DSignal_hmm.xml']
  884.               options:
  885.                 length: 10000
  886.  
  887.     HMMLOGLIK:
  888.        run: ['metric']
  889.        script: methods/mlpack/hmm_loglik.py
  890.        format: [csv, txt, xml]
  891.        datasets:
  892.            - files: [ ['datasets/artificial_2DSignal.csv', 'datasets/artificial_2DSignal_hmm.xml'] ]
  893.  
  894.     HMMVITERBI:
  895.        run: ['metric']
  896.        iteration: 3
  897.        script: methods/mlpack/hmm_viterbi.py
  898.        format: [csv, txt, xml]
  899.        datasets:
  900.            - files: [ ['datasets/artificial_2DSignal.csv', 'datasets/artificial_2DSignal_hmm.xml'] ]
  901. ---
  902. # MATLAB:
  903. # Numerical computing environment and programming language.
  904. # Requires Machine Learning and statistics toolbox installed.
  905. library: matlab
  906. methods:
  907.     PCA:
  908.         run: ['metric']
  909.         iteration: 3
  910.         script: methods/matlab/pca.py
  911.         format: [csv, txt]
  912.         datasets:
  913.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  914.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  915.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  916.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  917.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  918.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  919.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  920.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  921.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  922.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  923.  
  924.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  925.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  926.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  927.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  928.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  929.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  930.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  931.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  932.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  933.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  934.               options:
  935.                 new_dimensionality: 2
  936.  
  937.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  938.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  939.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  940.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  941.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  942.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  943.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  944.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  945.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  946.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  947.               options:
  948.                 new_dimensionality: 2
  949.                 scaled: True
  950.  
  951.     PERCEPTRON:
  952.         run: ['metric']
  953.         script: methods/matlab/perceptron.py
  954.         format: [csv, txt, arff]
  955.         datasets:
  956.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  957.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  958.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  959.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  960.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  961.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  962.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  963.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  964.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  965.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  966.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  967.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  968.               options:
  969.                 max_iterations: 10000
  970.     SVC:
  971.         run: ['metric']
  972.         script: methods/matlab/svc.py
  973.         format: [csv, txt, arff]
  974.         datasets:
  975.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  976.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  977.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  978.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  979.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  980.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  981.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  982.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  983.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  984.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  985.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  986.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  987.  
  988.     NMF:
  989.         run: ['metric']
  990.         iteration: 3
  991.         script: methods/matlab/nmf.py
  992.         format: [csv, txt]
  993.         datasets:
  994.             - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
  995.                       'datasets/optdigits.csv', 'datasets/waveform.csv',
  996.                       'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
  997.                       'datasets/isolet.csv', 'datasets/mnist_all.csv',
  998.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  999.               options:
  1000.                 rank: 6
  1001.                 seed: 42
  1002.                 update_rules: multdist
  1003.  
  1004.     KMEANS:
  1005.         run: ['metric']
  1006.         iteration: 3
  1007.         script: methods/matlab/kmeans.py
  1008.         format: [csv, txt, arff]
  1009.         datasets:
  1010.             - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
  1011.               options:
  1012.                 clusters: 2
  1013.  
  1014.             - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
  1015.                        ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
  1016.               options:
  1017.                 clusters: 3
  1018.  
  1019.             - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
  1020.               options:
  1021.                 clusters: 5
  1022.  
  1023.             - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
  1024.               options:
  1025.                 clusters: 6
  1026.  
  1027.             - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
  1028.                        ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
  1029.               options:
  1030.                 clusters: 7
  1031.  
  1032.             - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
  1033.               options:
  1034.                 clusters: 26
  1035.  
  1036.             - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
  1037.                        ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
  1038.               options:
  1039.                 clusters: 10
  1040.  
  1041.             - files: [ ['datasets/1000000-10-randu.csv'] ]
  1042.               options:
  1043.                 clusters: 75
  1044.     NBC:
  1045.         run: ['metric']
  1046.         iteration: 3
  1047.         script: methods/matlab/nbc.py
  1048.         format: [csv, txt]
  1049.         datasets:
  1050.             - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1051.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1052.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1053.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1054.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1055.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1056.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1057.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1058.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1059.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1060.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1061.                            
  1062.     ALLKNN:
  1063.         run: ['metric']
  1064.         iteration: 3
  1065.         script: methods/matlab/allknn.py
  1066.         format: [csv, txt]
  1067.         datasets:
  1068.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  1069.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  1070.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  1071.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  1072.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  1073.               options:
  1074.                 k: 3
  1075.                 seed: 42
  1076.  
  1077.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  1078.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  1079.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  1080.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  1081.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  1082.               options:
  1083.                 k: 3
  1084.                 seed: 42
  1085.                 naive_mode: True
  1086.  
  1087.     RANGESEARCH:
  1088.         run: ['metric']
  1089.         iteration: 3
  1090.         script: methods/matlab/range_search.py
  1091.         format: [csv, txt]
  1092.         datasets:
  1093.             - files: ['datasets/wine.csv', 'datasets/ionosphere.csv',
  1094.                       'datasets/cloud.csv', 'datasets/vehicle.csv',
  1095.                       'datasets/madelon_X.csv', 'datasets/arcene_X.csv',
  1096.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  1097.                       'datasets/covtype.csv', 'datasets/Twitter.csv']
  1098.               options:
  1099.                 max: 0.02
  1100.  
  1101.     LinearRegression:
  1102.         run: ['metric']
  1103.         iteration: 3
  1104.         script: methods/matlab/linear_regression.py
  1105.         format: [csv, txt]
  1106.         datasets:
  1107.              - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
  1108.                         ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
  1109.                         ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
  1110.                         ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  1111.                         ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  1112.     HMMGENERATE:
  1113.         run: ['metric']
  1114.         iteration: 3
  1115.         script: methods/matlab/hmm_generate.py
  1116.         format: [csv, txt, xml]
  1117.         datasets:
  1118.             - files: ['datasets/artificial_2DSignal_hmm.xml']
  1119.               options:
  1120.                 length: 10000
  1121.  
  1122.     LogisticRegression:
  1123.             run: ['metric']
  1124.             script: methods/matlab/logistic_regression.py
  1125.             format: [csv, txt, arff]
  1126.             datasets:
  1127.                 - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1128.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1129.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1130.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1131.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1132.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1133.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1134.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1135.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1136.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1137.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1138.  
  1139.     HMMVITERBI:
  1140.        run: ['metric']
  1141.        iteration: 3
  1142.        script: methods/matlab/hmm_viterbi.py
  1143.        format: [csv, txt, xml]
  1144.        datasets:
  1145.            - files: [ ['datasets/artificial_2DSignal.csv', 'datasets/artificial_2DSignal_hmm.xml'] ]
  1146.     DTC:
  1147.        run: ['metric']
  1148.        script: methods/matlab/dtc.py
  1149.        format: [csv, txt, arff]
  1150.        datasets:
  1151.            - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1152.                       ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1153.                       ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1154.                       ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1155.                       ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1156.                       ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1157.                       ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1158.                       ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1159.                       ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1160.                       ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1161.                       ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1162.                       ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1163.     KNC:
  1164.        run: ['metric']
  1165.        script: methods/matlab/knc.py
  1166.        format: [csv, txt, arff]
  1167.        datasets:
  1168.            - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1169.                       ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1170.                       ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1171.                       ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1172.                       ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1173.                       ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1174.                       ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1175.                       ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1176.                       ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1177.                       ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1178.                       ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1179.                       ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1180.              
  1181.              options:
  1182.                 k: 5
  1183.  
  1184.     LDA:
  1185.             run: ['metric']
  1186.             script: methods/matlab/lda.py
  1187.             format: [csv, txt, arff]
  1188.             datasets:
  1189.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1190.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1191.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1192.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1193.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1194.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1195.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1196.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1197.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1198.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1199.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1200.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1201.              
  1202.     QDA:
  1203.             run: ['metric']
  1204.             script: methods/matlab/qda.py
  1205.             format: [csv, txt, arff]
  1206.             datasets:
  1207.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1208.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1209.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1210.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1211.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1212.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1213.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1214.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1215.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1216.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1217.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1218.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1219.     SVR:
  1220.         run: ['metric']
  1221.         iteration: 3
  1222.         script: methods/scikit/svr.py
  1223.         format: [csv, txt]
  1224.         datasets:
  1225.             - files: [ ['datasets/diabetes.csv'],
  1226.                        ['datasets/cosExp.csv'],
  1227.                        ['datasets/TomsHardware.csv']]
  1228.  
  1229.     RANDOMFOREST:
  1230.             run: ['metric']
  1231.             script: methods/scikit/random_forest.py
  1232.             format: [csv, txt, arff]
  1233.             datasets:
  1234.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1235.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1236.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1237.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1238.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1239.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1240.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1241.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1242.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1243.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1244.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1245.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1246.                   options:
  1247.                      num_trees: 50
  1248.  
  1249. ---
  1250. # Scikit-Learn: machine learning in Python
  1251. library: scikit
  1252. methods:
  1253.     ICA:
  1254.         run: ['metric']
  1255.         iteration: 3
  1256.         script: methods/scikit/ica.py
  1257.         format: [csv, txt]
  1258.         datasets:
  1259.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  1260.                       'datasets/cities.csv', 'datasets/diabetes_X.csv']
  1261.  
  1262.     PCA:
  1263.         run: ['metric']
  1264.         iteration: 3
  1265.         script: methods/scikit/pca.py
  1266.         format: [csv, txt]
  1267.         datasets:
  1268.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  1269.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  1270.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  1271.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  1272.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  1273.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  1274.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  1275.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  1276.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  1277.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  1278.  
  1279.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  1280.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  1281.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  1282.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  1283.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  1284.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  1285.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  1286.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  1287.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  1288.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  1289.               options:
  1290.                 new_dimensionality: 2
  1291.  
  1292.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  1293.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  1294.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  1295.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  1296.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  1297.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  1298.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  1299.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  1300.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  1301.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  1302.               options:
  1303.                 new_dimensionality: 2
  1304.                 whiten: True
  1305.  
  1306.     PERCEPTRON:
  1307.         run: ['metric']
  1308.         script: methods/scikit/perceptron.py
  1309.         format: [csv, txt, arff]
  1310.         datasets:
  1311.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1312.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1313.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1314.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1315.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1316.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1317.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1318.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1319.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1320.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1321.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1322.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1323.               options:
  1324.                 max_iterations: 10000
  1325.  
  1326.     ADABOOST:
  1327.             run: ['metric']
  1328.             script: methods/scikit/adaboost.py
  1329.             format: [csv, txt, arff]
  1330.             datasets:
  1331.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1332.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1333.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1334.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1335.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1336.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1337.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1338.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1339.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1340.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1341.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1342.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1343.  
  1344.     DTC:
  1345.             run: ['metric']
  1346.             script: methods/scikit/dtc.py
  1347.             format: [csv, txt, arff]
  1348.             datasets:
  1349.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1350.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1351.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1352.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1353.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1354.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1355.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1356.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1357.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1358.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1359.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1360.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1361.  
  1362.     ElasticNet:
  1363.             run: ['metric']
  1364.             script: methods/scikit/elastic_net.py
  1365.             format: [csv, txt, arff]
  1366.             datasets:
  1367.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1368.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1369.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1370.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1371.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1372.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1373.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1374.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1375.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1376.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1377.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1378.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1379.  
  1380.     KNC:
  1381.             run: ['metric']
  1382.             script: methods/scikit/knc.py
  1383.             format: [csv, txt, arff]
  1384.             datasets:
  1385.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1386.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1387.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1388.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1389.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1390.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1391.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1392.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1393.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1394.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1395.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1396.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1397.                   options:
  1398.                      k: 5
  1399.  
  1400.     QDA:
  1401.             run: ['metric']
  1402.             script: methods/scikit/qda.py
  1403.             format: [csv, txt, arff]
  1404.             datasets:
  1405.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1406.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1407.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1408.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1409.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1410.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1411.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1412.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1413.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1414.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1415.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1416.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1417.  
  1418.     RANDOMFOREST:
  1419.             run: ['metric']
  1420.             script: methods/scikit/random_forest.py
  1421.             format: [csv, txt, arff]
  1422.             datasets:
  1423.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1424.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1425.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1426.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1427.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1428.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1429.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1430.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1431.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1432.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1433.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1434.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1435.                   options:
  1436.                     num_trees: 50
  1437.                     max_depth: 10
  1438.                     fitness_function: entropy
  1439.                     minimum_samples_split: 4
  1440.                     minimum_leaf_size: 2
  1441.                     num_jobs: 2
  1442.     SVM:
  1443.             run: ['metric']
  1444.             script: methods/scikit/svm.py
  1445.             format: [csv, txt, arff]
  1446.             datasets:
  1447.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1448.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1449.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1450.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1451.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1452.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1453.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1454.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1455.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1456.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1457.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1458.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1459.  
  1460.  
  1461.     LDA:
  1462.             run: ['metric']
  1463.             script: methods/scikit/lda.py
  1464.             format: [csv, txt, arff]
  1465.             datasets:
  1466.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1467.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1468.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1469.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1470.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1471.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1472.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1473.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1474.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1475.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1476.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1477.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1478.  
  1479.     NMF:
  1480.         run: ['metric']
  1481.         iteration: 3
  1482.         script: methods/scikit/nmf.py
  1483.         format: [csv, txt]
  1484.         datasets:
  1485.             - files: ['datasets/ionosphere.csv', 'datasets/piano_magnitude_spectogram.csv',
  1486.                       'datasets/optdigits.csv', 'datasets/waveform.csv',
  1487.                       'datasets/TomsHardware.csv', 'datasets/pendigits.csv',
  1488.                       'datasets/isolet.csv', 'datasets/mnist_all.csv',
  1489.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  1490.               options:
  1491.                 rank: 6
  1492.  
  1493.     KMEANS:
  1494.         run: ['metric']
  1495.         iteration: 3
  1496.         script: methods/scikit/kmeans.py
  1497.         format: [csv, txt, arff]
  1498.         datasets:
  1499.             - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
  1500.               options:
  1501.                 clusters: 2
  1502.  
  1503.             - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
  1504.                        ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
  1505.               options:
  1506.                 clusters: 3
  1507.  
  1508.             - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
  1509.               options:
  1510.                 clusters: 5
  1511.  
  1512.             - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
  1513.               options:
  1514.                 clusters: 6
  1515.  
  1516.             - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
  1517.                        ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
  1518.               options:
  1519.                 clusters: 7
  1520.  
  1521.             - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
  1522.               options:
  1523.                 clusters: 26
  1524.  
  1525.             - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
  1526.                        ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
  1527.               options:
  1528.                 clusters: 10
  1529.  
  1530.             - files: [ ['datasets/1000000-10-randu.csv'] ]
  1531.               options:
  1532.                 centroids: 75
  1533.     NBC:
  1534.         run: ['metric']
  1535.         iteration: 3
  1536.         script: methods/scikit/nbc.py
  1537.         format: [csv, txt]
  1538.         datasets:
  1539.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
  1540.                      ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
  1541.                      ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
  1542.     KPCA:
  1543.         run: ['metric']
  1544.         iteration: 3
  1545.         script: methods/scikit/kernel_pca.py
  1546.         format: [csv, txt]
  1547.         datasets:
  1548.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  1549.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  1550.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  1551.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  1552.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  1553.                       'datasets/covtype.csv']
  1554.               options:
  1555.                 kernel: linear
  1556.  
  1557.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  1558.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  1559.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  1560.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  1561.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  1562.                       'datasets/covtype.csv']
  1563.               options:
  1564.                 kernel: polynomial
  1565.  
  1566.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  1567.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  1568.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  1569.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  1570.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  1571.                       'datasets/covtype.csv']
  1572.               options:
  1573.                 kernel: hyptan
  1574.     ANN:
  1575.         run: ['metric']
  1576.         script: methods/scikit/LSHForest.py
  1577.         format: [csv, txt, arff]
  1578.         datasets:
  1579.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1580.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1581.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1582.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1583.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1584.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1585.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1586.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1587.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1588.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1589.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1590.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1591.     LARS:
  1592.         run: ['metric']
  1593.         iteration: 3
  1594.         script: methods/scikit/lars.py
  1595.         format: [csv, txt]
  1596.         datasets:
  1597.             - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  1598.                        ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
  1599.                        ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
  1600.                        ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
  1601.               options:
  1602.                 lambda1: 0.01
  1603.  
  1604.     LASSO:
  1605.         run: ['metric']
  1606.         iteration: 3
  1607.         script: methods/scikit/lasso.py
  1608.         format: [csv, txt]
  1609.         datasets:
  1610.             - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  1611.                        ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
  1612.                        ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
  1613.                        ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
  1614.               # script does not accept any options currently
  1615.               # options: '-l 0.01'
  1616.  
  1617.     SVR:
  1618.         run: ['metric']
  1619.         iteration: 3
  1620.         script: methods/scikit/svr.py
  1621.         format: [csv, txt]
  1622.         datasets:
  1623.             - files: [ ['datasets/diabetes.csv'],
  1624.                        ['datasets/cosExp.csv'],
  1625.                        ['datasets/TomsHardware.csv']]
  1626.               options:
  1627.                 c: 1.0
  1628.                 epsilon: 1.0
  1629.                 gamma: 0.1
  1630.  
  1631.     ALLKNN:
  1632.         run: ['metric']
  1633.         iteration: 3
  1634.         script: methods/scikit/allknn.py
  1635.         format: [csv, txt]
  1636.         datasets:
  1637.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  1638.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  1639.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  1640.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  1641.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  1642.               options:
  1643.                 k: 3 # random seed cannot be set
  1644.     GMM:
  1645.         run: ['metric']
  1646.         iteration: 3
  1647.         script: methods/scikit/gmm.py
  1648.         format: [csv, txt]
  1649.         datasets:
  1650.             - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
  1651.                       'datasets/iris.csv', 'datasets/wine.csv',
  1652.                       'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
  1653.                       'datasets/optdigits.csv', 'datasets/isolet.csv',
  1654.                       'datasets/TomsHardware.csv', 'datasets/covtype.csv']
  1655.               options:
  1656.                 gaussians: 3
  1657.  
  1658.     LinearRegression:
  1659.         run: ['metric']
  1660.         iteration: 3
  1661.         script: methods/scikit/linear_regression.py
  1662.         format: [csv, txt, arff]
  1663.         datasets:
  1664.              - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
  1665.                         ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
  1666.                         ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
  1667.                         ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  1668.                         ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  1669.     SparseCoding:
  1670.         run: ['metric']
  1671.         iteration: 3
  1672.         script: methods/scikit/sparse_coding.py
  1673.         format: [csv, txt]
  1674.         datasets:
  1675.             - files: ['datasets/pendigits.csv']
  1676.               options:
  1677.                 atoms: 12
  1678.                 seed: 42
  1679.                 max_iterations: 100
  1680.  
  1681.             - files: ['datasets/pendigits.csv']
  1682.               options:
  1683.                 atoms: 12
  1684.                 seed: 42
  1685.  
  1686.             - files: ['datasets/pendigits.csv']
  1687.               options:
  1688.                 atoms: 12
  1689.                 seed: 42
  1690.                 normalize: True
  1691.  
  1692.     LinearRidgeRegression:
  1693.         run: ['metric']
  1694.         iteration: 3
  1695.         script: methods/scikit/linear_ridge_regression.py
  1696.         format: [csv, txt]
  1697.         datasets:
  1698.             - files: [ ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1699.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'] ]
  1700.               options:
  1701.                 alpha: 1.0
  1702.             - files: [ ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'],
  1703.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'] ]
  1704.               options:
  1705.                 alpha: 5.0
  1706.             - files: [ ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1707.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'] ]
  1708.               options:
  1709.                 alpha: 50.0
  1710.  
  1711.     LogisticRegression:
  1712.         run: ['metric']
  1713.         iteration: 3
  1714.         script: methods/scikit/logistic_regression.py
  1715.         format: [csv,txt]
  1716.         datasets:
  1717.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1718.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1719.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1720.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1721.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1722.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1723.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1724.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1725.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1726.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1727.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1728.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1729. ---
  1730. # mlpy is a Python module for Machine Learning built on top of NumPy/SciPy
  1731. # and the GNU Scientific Libraries.
  1732. library: mlpy
  1733. methods:
  1734.     PCA:
  1735.         run: ['metric']
  1736.         iteration: 3
  1737.         script: methods/mlpy/pca.py
  1738.         format: [csv, txt]
  1739.         datasets:
  1740.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  1741.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  1742.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  1743.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  1744.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  1745.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  1746.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  1747.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  1748.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  1749.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  1750.  
  1751.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  1752.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  1753.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  1754.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  1755.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  1756.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  1757.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  1758.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  1759.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  1760.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  1761.               options:
  1762.                 new_dimensionality: 2
  1763.  
  1764.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  1765.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  1766.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  1767.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  1768.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  1769.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  1770.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  1771.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  1772.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  1773.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  1774.               options:
  1775.                 new_dimensionality: 2
  1776.                 whiten: True
  1777.  
  1778.     KMEANS:
  1779.         run: ['metric']
  1780.         iteration: 3
  1781.         script: methods/mlpy/kmeans.py
  1782.         format: [csv, txt, arff]
  1783.         datasets:
  1784.             - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
  1785.               options:
  1786.                 clusters: 2
  1787.  
  1788.             - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
  1789.                        ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
  1790.               options:
  1791.                 clusters: 3
  1792.  
  1793.             - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
  1794.               options:
  1795.                 clusters: 5
  1796.  
  1797.             - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
  1798.               options:
  1799.                 clusters: 6
  1800.  
  1801.             - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
  1802.                        ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
  1803.               options:
  1804.                 clusters: 7
  1805.  
  1806.             - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
  1807.               options:
  1808.                 clusters: 26
  1809.  
  1810.             - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
  1811.                        ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
  1812.               options:
  1813.                 clusters: 10
  1814.  
  1815.             - files: [ ['datasets/1000000-10-randu.csv'] ]
  1816.               options:
  1817.                 clusters: 75
  1818.  
  1819.     ElasticNet:
  1820.             run: ['metric']
  1821.             script: methods/mlpy/elastic_net.py
  1822.             format: [csv, txt, arff]
  1823.             datasets:
  1824.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1825.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1826.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1827.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1828.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1829.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1830.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1831.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1832.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1833.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1834.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1835.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1836.  
  1837.     KNC:
  1838.             run: ['metric']
  1839.             script: methods/mlpy/knc.py
  1840.             format: [csv, txt, arff]
  1841.             datasets:
  1842.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1843.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1844.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1845.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1846.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1847.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1848.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1849.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1850.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1851.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1852.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1853.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1854.                  
  1855.                   options:
  1856.                      k: 5
  1857.  
  1858.     DECISIONTREE:
  1859.             run: ['metric']
  1860.             script: methods/mlpy/decision_tree.py
  1861.             format: [csv, txt, arff]
  1862.             datasets:
  1863.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1864.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1865.                            ['datasets/scene_train.csv','datasets/scene_test.csv','datasets/scene_labels.csv'] ]
  1866.                   options:
  1867.                     stumps: 10
  1868.                     minimum_leaf_size: 10
  1869.  
  1870.                 - files: [ ['datasets/iris_train.csv','datasets/iris_test.csv','datasets/iris_labels.csv'],
  1871.                            ['datasets/oilspill_train.csv','datasets/oilspill_test.csv','datasets/oilspill_labels.csv'] ]
  1872.  
  1873.     LDA:
  1874.             run: ['metric']
  1875.             script: methods/mlpy/lda.py
  1876.             format: [csv, txt, arff]
  1877.             datasets:
  1878.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1879.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1880.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1881.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1882.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1883.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1884.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1885.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1886.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1887.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1888.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1889.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1890.  
  1891.     PERCEPTRON:
  1892.             run: ['metric']
  1893.             script: methods/mlpy/perceptron.py
  1894.             format: [csv, txt, arff]
  1895.             datasets:
  1896.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1897.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1898.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1899.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1900.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1901.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1902.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1903.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1904.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1905.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1906.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1907.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1908.                   options:
  1909.                     max_iterations: 10000
  1910.  
  1911.     SVM:
  1912.             run: ['metric']
  1913.             script: methods/mlpy/svm.py
  1914.             format: [csv, txt, arff]
  1915.             datasets:
  1916.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1917.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1918.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1919.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1920.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1921.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1922.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1923.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1924.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1925.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1926.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1927.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1928.  
  1929.  
  1930.  
  1931.     Golub:
  1932.             run: ['metric']
  1933.             script: methods/mlpy/golub.py
  1934.             format: [csv, txt, arff]
  1935.             datasets:
  1936.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  1937.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  1938.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  1939.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  1940.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  1941.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  1942.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  1943.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  1944.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  1945.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  1946.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  1947.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  1948.  
  1949.     KPCA:
  1950.         run: ['metric']
  1951.         iteration: 3
  1952.         script: methods/mlpy/kernel_pca.py
  1953.         format: [csv, txt]
  1954.         datasets:
  1955.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  1956.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  1957.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  1958.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  1959.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  1960.                       'datasets/covtype.csv']
  1961.               options:
  1962.                 kernel: linear
  1963.  
  1964.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  1965.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  1966.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  1967.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  1968.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  1969.                       'datasets/covtype.csv']
  1970.               options:
  1971.                 kernel: gaussian
  1972.  
  1973.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  1974.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  1975.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  1976.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  1977.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  1978.                       'datasets/covtype.csv']
  1979.               options:
  1980.                 kernel: hyptan
  1981.  
  1982.     LARS:
  1983.         run: ['metric']
  1984.         iteration: 3
  1985.         script: methods/mlpy/lars.py
  1986.         format: [csv, txt]
  1987.         datasets:
  1988.               - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  1989.                          ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
  1990.                          ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
  1991.                          ['datasets/madelon_X.csv', 'datasets/madelon_y.csv'] ]
  1992.                 # TODO: add support for lambda to mlpy LARS
  1993.                 # options: '-l 0.01'
  1994.     ALLKNN:
  1995.         run: ['metric']
  1996.         iteration: 3
  1997.         script: methods/mlpy/allknn.py
  1998.         format: [csv, txt]
  1999.         datasets:
  2000.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2001.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2002.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2003.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2004.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2005.               options:
  2006.                 k: 3 # random seed cannot be specified
  2007.  
  2008.     LinearRegression:
  2009.         run: ['metric']
  2010.         iteration: 3
  2011.         script: methods/mlpy/linear_regression.py
  2012.         format: [csv, txt]
  2013.         datasets:
  2014.              - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
  2015.                         ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
  2016.                         ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
  2017.                         ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  2018.                         ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  2019. ---
  2020. # Shogun - A Large Scale Machine Learning Toolbox
  2021. library: shogun
  2022. methods:
  2023.     PCA:
  2024.         run: ['metric']
  2025.         iteration: 3
  2026.         script: methods/shogun/pca.py
  2027.         format: [csv, txt]
  2028.         datasets:
  2029.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  2030.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  2031.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  2032.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  2033.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  2034.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  2035.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  2036.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  2037.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  2038.  
  2039.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  2040.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  2041.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  2042.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  2043.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  2044.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  2045.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  2046.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  2047.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  2048.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  2049.               options:
  2050.                 new_dimensionality: 2
  2051.  
  2052.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  2053.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  2054.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  2055.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  2056.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  2057.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  2058.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  2059.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  2060.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  2061.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  2062.               options:
  2063.                 new_dimensionality: 2
  2064.                 whiten: True
  2065.     RANDOMFOREST:
  2066.         run: ['timing', 'metric']
  2067.         script: methods/shogun/random_forest.py
  2068.         format: [csv, txt, arff]
  2069.         datasets:
  2070.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2071.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2072.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2073.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2074.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2075.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2076.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2077.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2078.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2079.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2080.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2081.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2082.               options:
  2083.                 num_trees: 50
  2084.  
  2085.     PERCEPTRON:
  2086.         run: ['metric']
  2087.         script: methods/shogun/perceptron.py
  2088.         format: [csv, txt, arff]
  2089.         datasets:
  2090.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2091.                        ['datasets/optdigits_train.csv', 'datasets/optdigits_test.csv', 'datasets/optdigits_labels.csv'],
  2092.                        ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  2093.                        ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  2094.               options:
  2095.                 max_iterations: 10000
  2096.  
  2097.     KMEANS:
  2098.         run: ['metric']
  2099.         iteration: 3
  2100.         script: methods/shogun/kmeans.py
  2101.         format: [arff, csv, txt]
  2102.         datasets:
  2103.             - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
  2104.               options:
  2105.                 clusters: 2
  2106.  
  2107.             - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
  2108.                        ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
  2109.               options:
  2110.                 clusters: 3
  2111.  
  2112.             - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
  2113.               options:
  2114.                 clusters: 5
  2115.  
  2116.             - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
  2117.               options:
  2118.                 clusters: 6
  2119.  
  2120.             - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
  2121.                        ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
  2122.               options:
  2123.                 clusters: 7
  2124.  
  2125.             - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
  2126.               options:
  2127.                 clusters: 26
  2128.  
  2129.             - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
  2130.                        ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
  2131.               options:
  2132.                 clusters: 10
  2133.  
  2134.             - files: [ ['datasets/1000000-10-randu.csv'] ]
  2135.               options:
  2136.                 clusters: 75
  2137.     KPCA:
  2138.         run: ['metric']
  2139.         iteration: 3
  2140.         script: methods/shogun/kernel_pca.py
  2141.         format: [csv, txt]
  2142.         datasets:
  2143.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  2144.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  2145.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  2146.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  2147.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  2148.                       'datasets/covtype.csv']
  2149.               options:
  2150.                 kernel: linear
  2151.  
  2152.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  2153.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  2154.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  2155.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  2156.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  2157.                       'datasets/covtype.csv']
  2158.               options:
  2159.                 kernel: linear
  2160.  
  2161.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  2162.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  2163.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  2164.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  2165.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  2166.                       'datasets/covtype.csv']
  2167.               options:
  2168.                 kernel: polynomial
  2169.  
  2170.             - files: ['datasets/circle_data.csv', 'datasets/stock.csv',
  2171.                       'datasets/abalone.csv', 'datasets/bank8FM.csv',
  2172.                       'datasets/waveform.csv', 'datasets/TomsHardware.csv',
  2173.                       'datasets/arcene_X.csv', 'datasets/madelon_X.csv',
  2174.                       'datasets/pendigits.csv', 'datasets/isolet.csv',
  2175.                       'datasets/covtype.csv']
  2176.               options:
  2177.                 kernel: hyptan
  2178.     NBC:
  2179.         run: ['metric']
  2180.         iteration: 3
  2181.         script: methods/shogun/nbc.py
  2182.         format: [csv, txt]
  2183.         datasets:
  2184.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv'],
  2185.                        ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
  2186.                        ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'] ]
  2187.  
  2188.     ALLKNN:
  2189.         run: ['metric']
  2190.         iteration: 3
  2191.         script: methods/shogun/allknn.py
  2192.         format: [csv, txt]
  2193.         datasets:
  2194.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2195.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2196.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2197.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2198.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2199.               options:
  2200.                 k: 3
  2201.  
  2202.     GMM:
  2203.         run: ['metric']
  2204.         iteration: 3
  2205.         script: methods/shogun/gmm.py
  2206.         format: [csv, txt]
  2207.         datasets:
  2208.             - files: ['datasets/artificial_2DSignal.csv', 'datasets/artificial_5DSignal.csv',
  2209.                       'datasets/iris.csv', 'datasets/wine.csv',
  2210.                       'datasets/vehicle.csv', 'datasets/USCensus1990.csv',
  2211.                       'datasets/optdigits.csv', 'datasets/isolet.csv',
  2212.                       'datasets/TomsHardware.csv', 'datasets/covtype.csv']
  2213.               options:
  2214.                 gaussians: 3
  2215.  
  2216.     LinearRegression:
  2217.         run: ['metric']
  2218.         iteration: 3
  2219.         script: methods/shogun/linear_regression.py
  2220.         format: [csv, txt]
  2221.         datasets:
  2222.              - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
  2223.                         ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
  2224.                         ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
  2225.                         ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  2226.                         ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  2227.  
  2228.     LASSO:
  2229.         run: ['metric']
  2230.         iteration: 3
  2231.         script: methods/shogun/lasso.py
  2232.         format: [csv, txt]
  2233.         datasets:
  2234.             - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  2235.                        ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
  2236.                        ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
  2237.                        ['datasets/madelon_X.csv', 'datasets/madelon_y.csv']]
  2238.               options:
  2239.                 lambda1: 0.01
  2240.  
  2241.     LMNN:
  2242.         run: ['metric']
  2243.         script: methods/shogun/lmnn.py
  2244.         format: [csv, txt]
  2245.         datasets:
  2246.             - files: ['datasets/iris_train.csv',
  2247.                       ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  2248.                       'datasets/wine.csv', 'datasets/ionosphere.csv',
  2249.                       'datasets/shuttle_train.csv', 'datasets/isolet.csv',
  2250.                       'datasets/covtype.csv', 'datasets/corel-histogram.csv',
  2251.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  2252.                       'datasets/balance_scale.csv', 'datasets/letter_recognition.csv']
  2253.  
  2254.     QDA:
  2255.             run: ['metric','metric']
  2256.             script: methods/shogun/qda.py
  2257.             format: [csv, txt, arff]
  2258.             datasets:
  2259.                 - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2260.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2261.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2262.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2263.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2264.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2265.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2266.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2267.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2268.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2269.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2270.  
  2271.     LogisticRegression:
  2272.             run: ['metric','metric']
  2273.             script: methods/shogun/logistic_regression.py
  2274.             format: [csv, txt, arff]
  2275.             datasets:
  2276.                 - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2277.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2278.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2279.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2280.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2281.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2282.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2283.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2284.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2285.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2286.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2287.  
  2288.     LinearRidgeRegression:
  2289.         run: ['metric']
  2290.         iteration: 3
  2291.         script: methods/shogun/linear_ridge_regression.py
  2292.         format: [csv, txt]
  2293.         datasets:
  2294.             - files: [ ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2295.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'] ]
  2296.               options:
  2297.                 alpha: 1.0
  2298.             - files: [ ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'],
  2299.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'] ]
  2300.               options:
  2301.                 alpha: 5.0
  2302.             - files: [ ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2303.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'] ]
  2304.               options:
  2305.                 alpha: 50.0
  2306.  
  2307.     SVR:
  2308.         run: ['metric']
  2309.         iteration: 3
  2310.         script: methods/shogun/svr.py
  2311.         format: [csv, txt]
  2312.         datasets:
  2313.             - files: [ ['datasets/diabetes.csv'],
  2314.                        ['datasets/cosExp.csv'],
  2315.                        ['datasets/TomsHardware.csv']]
  2316.               options:
  2317.                 c: 1.0
  2318.                 epsilon: 1.0
  2319.                 gamma: 0.1
  2320.  
  2321.     KNC:
  2322.             run: ['timing', 'metric']
  2323.             script: methods/shogun/knc.py
  2324.             format: [csv, txt, arff]
  2325.             datasets:
  2326.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2327.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2328.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2329.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2330.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2331.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2332.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2333.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2334.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2335.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2336.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2337.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2338.                    
  2339.                   options:
  2340.                      k: 5
  2341.  
  2342.     DTC:
  2343.             run: ['timing', 'metric']
  2344.             script: methods/shogun/decision_tree.py
  2345.             format: [csv, txt, arff]
  2346.             datasets:
  2347.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2348.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2349.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2350.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2351.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2352.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2353.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2354.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2355.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2356.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2357.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2358.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2359.  
  2360.     LDA:
  2361.             run: ['metric']
  2362.             script: methods/shogun/lda.py
  2363.             format: [csv, txt, arff]
  2364.             datasets:
  2365.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2366.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2367.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2368.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2369.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2370.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2371.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2372.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2373.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2374.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2375.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2376.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2377.  
  2378. ---
  2379. # Weka: Data Mining Software in Java
  2380. library: weka
  2381. methods:
  2382.     PCA:
  2383.         run: ['metric']
  2384.         iteration: 3
  2385.         script: methods/weka/pca.py
  2386.         format: [arff]
  2387.         datasets:
  2388.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  2389.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  2390.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  2391.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  2392.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  2393.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  2394.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  2395.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  2396.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  2397.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  2398.  
  2399.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  2400.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  2401.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  2402.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  2403.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  2404.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  2405.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  2406.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  2407.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  2408.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  2409.               options:
  2410.                 new_dimensionality: 2
  2411.  
  2412.             - files: ['datasets/iris.csv', 'datasets/wine.csv',
  2413.                       'datasets/cities.csv', 'datasets/diabetes_X.csv',
  2414.                       'datasets/artificial_data.csv', 'datasets/ionosphere.csv',
  2415.                       'datasets/bank8FM.csv', 'datasets/faces.csv',
  2416.                       'datasets/shuttle_train.csv', 'datasets/dexter_test.csv',
  2417.                       'datasets/arcene_X.csv','datasets/madelon_X.csv',
  2418.                       'datasets/corel-histogram.csv', 'datasets/isolet.csv',
  2419.                       'datasets/covtype.csv', 'datasets/1000000-10-randu.csv',
  2420.                       'datasets/mnist_all.csv', 'datasets/Twitter.csv',
  2421.                       'datasets/tinyImages100k.csv', 'datasets/yearpredictionmsd.csv']
  2422.               options:
  2423.                 new_dimensionality: 2
  2424.                 whiten: True
  2425.     KMEANS:
  2426.         run: ['metric']
  2427.         iteration: 3
  2428.         script: methods/weka/kmeans.py
  2429.         format: [arff]
  2430.         datasets:
  2431.             - files: [ ['datasets/waveform.csv'] ]
  2432.               options:
  2433.                 clusters: 2
  2434.  
  2435.             - files: [ ['datasets/wine.csv'],
  2436.                        ['datasets/iris.csv'] ]
  2437.               options:
  2438.                 clusters: 3
  2439.  
  2440.             - files: [ ['datasets/cloud.csv'] ]
  2441.               options:
  2442.                 clusters: 5
  2443.  
  2444.             - files: [ ['datasets/USCensus1990.csv'] ]
  2445.               options:
  2446.                 clusters: 6
  2447.  
  2448.             - files: [ ['datasets/covtype.csv'],
  2449.                        ['datasets/wine_qual.csv'] ]
  2450.               options:
  2451.                 clusters: 7
  2452.  
  2453.             - files: [ ['datasets/isolet.csv'] ]
  2454.               options:
  2455.                 clusters: 26
  2456.  
  2457.             - files: [ ['datasets/mnist_all.csv'],
  2458.                        ['datasets/corel-histogram.csv'] ]
  2459.               options:
  2460.                 clusters: 10
  2461.  
  2462.             - files: [ ['datasets/1000000-10-randu.csv'] ]
  2463.               options:
  2464.                 clusters: 75
  2465.     ALLKNN:
  2466.         run: ['metric']
  2467.         iteration: 3
  2468.         script: methods/weka/allknn.py
  2469.         format: [arff]
  2470.         datasets:
  2471.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2472.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2473.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2474.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2475.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2476.               options:
  2477.                 k: 3
  2478.                 seed: 42
  2479.  
  2480.     LinearRegression:
  2481.         run: ['metric']
  2482.         iteration: 3
  2483.         script: methods/weka/linear_regression.py
  2484.         format: [arff]
  2485.         datasets:
  2486.              - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
  2487.                         ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
  2488.                         ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
  2489.                         ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  2490.                         ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  2491.     DTC:
  2492.         run: ['metric']
  2493.         script: methods/weka/dtc.py
  2494.         format: [arff]
  2495.         datasets:
  2496.              - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2497.                         ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2498.                         ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2499.                         ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2500.                         ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2501.                         ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2502.                         ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2503.                         ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2504.                         ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2505.                         ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2506.                         ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2507.                         ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2508.     LogisticRegression:
  2509.         run: ['metric']
  2510.         iteration: 3
  2511.         script: methods/weka/logistic_regression.py
  2512.         format: [arff]
  2513.         datasets:
  2514.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2515.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2516.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2517.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2518.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2519.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2520.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2521.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2522.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2523.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2524.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2525.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2526.     NBC:
  2527.         run: ['metric']
  2528.         iteration: 3
  2529.         script: methods/weka/nbc.py
  2530.         format: [arff]
  2531.         datasets:
  2532.             - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2533.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2534.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2535.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2536.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2537.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2538.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2539.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2540.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2541.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2542.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2543.     RANDOMFOREST:
  2544.         run: ['metric']
  2545.         script: methods/weka/random_forest.py
  2546.         format: [arff]
  2547.         datasets:
  2548.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2549.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2550.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2551.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2552.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2553.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2554.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2555.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2556.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2557.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2558.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2559.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2560.  
  2561.     PERCEPTRON:
  2562.         run: ['metric']
  2563.         script: methods/weka/perceptron.py
  2564.         format: [arff]
  2565.         datasets:
  2566.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2567.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2568.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2569.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2570.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2571.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2572.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2573.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2574.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2575.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2576.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2577.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2578.  
  2579. ---
  2580. #  ANN:
  2581. #  A Library for Approximate Nearest Neighbor Searching
  2582. library: ann
  2583. methods:
  2584.     ALLKNN:
  2585.           run: ['metric']
  2586.           script: methods/ann/allknn.py
  2587.           format: [csv, txt]
  2588.           datasets:
  2589.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2590.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2591.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2592.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2593.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2594.                 options:
  2595.                   k: 3
  2596.                   seed: 42
  2597.  
  2598.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2599.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2600.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2601.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2602.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2603.                 options:
  2604.                   k: 3
  2605.                   seed: 42
  2606.                   epsilon: 0.0
  2607.  
  2608.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2609.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2610.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2611.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2612.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2613.                 options:
  2614.                   k: 3
  2615.                   seed: 42
  2616.                   epsilon: 0.05
  2617.  
  2618.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2619.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2620.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2621.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2622.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2623.                 options:
  2624.                   k: 3
  2625.                   seed: 42
  2626.                   epsilon: 0.10
  2627.  
  2628.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2629.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2630.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2631.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2632.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2633.                 options:
  2634.                   k: 3
  2635.                   seed: 42
  2636.                   epsilon: 0.15
  2637.  
  2638.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2639.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2640.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2641.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2642.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2643.                 options:
  2644.                   k: 3
  2645.                   seed: 42
  2646.                   epsilon: 0.20
  2647.  
  2648.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2649.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2650.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2651.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2652.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2653.                 options:
  2654.                   k: 3
  2655.                   seed: 42
  2656.                   epsilon: 0.25
  2657. ---
  2658. #  FLANN:
  2659. #  A Library for Fast Library for Approximate Nearest Neighbors
  2660. library: flann
  2661. methods:
  2662.     ALLKNN:
  2663.           run: ['metric']
  2664.           script: methods/flann/allknn.py
  2665.           format: [csv, txt]
  2666.           datasets:
  2667.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2668.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2669.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2670.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2671.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2672.                 options:
  2673.                   k: 3
  2674.                   seed: 42
  2675.  
  2676.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2677.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2678.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2679.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2680.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2681.                 options:
  2682.                   k: 3
  2683.                   seed: 42
  2684.                   epsilon: 0.0
  2685.  
  2686.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2687.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2688.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2689.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2690.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2691.                 options:
  2692.                   k: 3
  2693.                   seed: 42
  2694.                   epsilon: 0.0
  2695.  
  2696.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2697.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2698.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2699.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2700.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2701.                 options:
  2702.                   k: 3
  2703.                   seed: 42
  2704.                   epsilon: 0.0
  2705.  
  2706.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2707.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2708.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2709.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2710.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2711.                 options:
  2712.                   k: 3
  2713.                   seed: 42
  2714.                   epsilon: 0.0
  2715.  
  2716.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2717.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2718.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2719.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2720.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2721.                 options:
  2722.                   k: 3
  2723.                   seed: 42
  2724.                   epsilon: 0.0
  2725.  
  2726.               - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  2727.                         'datasets/wine_qual.csv', 'datasets/isolet.csv',
  2728.                         'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  2729.                         'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  2730.                         'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  2731.                 options:
  2732.                   k: 3
  2733.                   seed: 42
  2734.                   epsilon: 0.0
  2735. ---
  2736. # MRPT: fast nearest neighbor search with random projection
  2737. library: mrpt
  2738. methods:
  2739.     ANN:
  2740.         run: ['metric']
  2741.         script: methods/mrpt/ann.py
  2742.         format: [csv, txt, arff]
  2743.         datasets:
  2744.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2745.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2746.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2747.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2748.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2749.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2750.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2751.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2752.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2753.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2754.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2755.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2756.               options:
  2757.                 k: 10
  2758.                 num_trees: 10
  2759. ---
  2760. # Annoy: Approximate Nearest Neighbors Oh Yeah
  2761. library: annoy
  2762. methods:
  2763.     ANN:
  2764.         run: ['metric']
  2765.         script: methods/annoy/ann.py
  2766.         format: [csv, txt, arff]
  2767.         datasets:
  2768.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2769.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2770.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2771.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2772.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2773.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2774.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2775.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2776.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2777.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2778.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2779.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2780.               options:
  2781.                 k: 10
  2782.                 trees: 10
  2783. ---
  2784. # Nearpy
  2785. library: nearpy
  2786. methods:
  2787.     ANN:
  2788.         run: ['metric']
  2789.         script: methods/nearpy/ann.py
  2790.         format: [csv, txt, arff]
  2791.         datasets:
  2792.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2793.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2794.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2795.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2796.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2797.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2798.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2799.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2800.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2801.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2802.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2803.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2804. ---
  2805. # Milk Machine Learning Toolkit for Python
  2806. library: milk
  2807. methods:
  2808.     KMEANS:
  2809.         run: ['metric']
  2810.         script: methods/milk/kmeans.py
  2811.         format: [csv, txt, arff]
  2812.         datasets:
  2813.             - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
  2814.               options:
  2815.                 clusters: 2
  2816.  
  2817.             - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
  2818.                        ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
  2819.               options:
  2820.                 clusters: 3
  2821.  
  2822.             - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
  2823.               options:
  2824.                 clusters: 5
  2825.  
  2826.             - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
  2827.               options:
  2828.                 clusters: 6
  2829.  
  2830.             - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
  2831.                        ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
  2832.               options:
  2833.                 clusters: 7
  2834.  
  2835.             - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
  2836.               options:
  2837.                 clusters: 26
  2838.  
  2839.             - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
  2840.                        ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
  2841.               options:
  2842.                 clusters: 10
  2843.  
  2844.     RANDOMFOREST:
  2845.         run: ['timing', 'metric']
  2846.         script: methods/milk/random_forest.py
  2847.         format: [csv, txt, arff]
  2848.         datasets:
  2849.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2850.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2851.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2852.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2853.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2854.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2855.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2856.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2857.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2858.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2859.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2860.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2861.     ADABOOST:
  2862.             run: ['metric']
  2863.             script: methods/milk/adaboost.py
  2864.             format: [csv, txt, arff]
  2865.             datasets:
  2866.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2867.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2868.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2869.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2870.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2871.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2872.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2873.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2874.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2875.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2876.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2877.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2878.     DTC:
  2879.             run: ['metric']
  2880.             script: methods/milk/dtc.py
  2881.             format: [csv, txt, arff]
  2882.             datasets:
  2883.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2884.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2885.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2886.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2887.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2888.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2889.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2890.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2891.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2892.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2893.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2894.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2895.     PERCEPTRON:
  2896.         run: ['metric']
  2897.         script: methods/milk/perceptron.py
  2898.         format: [csv, txt, arff]
  2899.         datasets:
  2900.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2901.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2902.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2903.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2904.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2905.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2906.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2907.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2908.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2909.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2910.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2911.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2912.     LogisticRegression:
  2913.             run: ['metric','metric']
  2914.             script: methods/milk/logistic_regression.py
  2915.             format: [csv, txt, arff]
  2916.             datasets:
  2917.                 - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2918.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2919.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2920.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2921.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2922.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2923.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2924.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2925.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2926.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'] ]
  2927. ---
  2928. # R
  2929. library: R
  2930. methods:
  2931.     NBC:
  2932.         run: ['metric']
  2933.         script: methods/R/nbc.py
  2934.         format: [csv, txt, arff]
  2935.         datasets:
  2936.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2937.                        ['datasets/transfusion_train.csv', 'datasets/transfusion_test.csv'],
  2938.                        ['datasets/madelon_train.csv', 'datasets/madelon_test.csv']]
  2939.     ADABOOST:
  2940.             run: ['metric']
  2941.             script: methods/R/adaboost.py
  2942.             format: [csv, txt, arff]
  2943.             datasets:
  2944.                 - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2945.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2946.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2947.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2948.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2949.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2950.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2951.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2952.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2953.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2954.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2955.  
  2956.  
  2957.     QDA:
  2958.             run: ['metric']
  2959.             script: methods/R/qda.py
  2960.             format: [csv, txt, arff]
  2961.             datasets:
  2962.                 - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2963.                            ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2964.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2965.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2966.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2967.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2968.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2969.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2970.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2971.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2972.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2973.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2974.     DTC:
  2975.        run: ['metric']
  2976.        script: methods/R/dtc.py
  2977.        format: [csv, txt, arff]
  2978.        datasets:
  2979.            - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2980.                       ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2981.                       ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2982.                       ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  2983.                       ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  2984.                       ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  2985.                       ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  2986.                       ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  2987.                       ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  2988.                       ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  2989.                       ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  2990.                       ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  2991.     KNC:
  2992.        run: ['metric']
  2993.        script: methods/R/knc.py
  2994.        format: [csv, txt, arff]
  2995.        datasets:
  2996.            - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  2997.                       ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  2998.                       ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  2999.                       ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  3000.                       ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  3001.                       ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  3002.                       ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  3003.                       ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  3004.                       ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  3005.                       ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  3006.                       ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  3007.                       ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  3008.              
  3009.              options:
  3010.                 k: 5
  3011.  
  3012.     RANDOMFOREST:
  3013.        run: ['metric']
  3014.        script: methods/R/random_forest.py
  3015.        format: [csv, txt, arff]
  3016.        datasets:
  3017.            - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  3018.                       ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  3019.                       ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  3020.                       ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  3021.                       ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  3022.                       ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  3023.                       ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  3024.                       ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  3025.                       ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  3026.                       ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  3027.                       ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  3028.                       ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  3029.              options:
  3030.                 num_trees: 50
  3031.     SVC:
  3032.        run: ['metric']
  3033.        script: methods/R/svc.py
  3034.        format: [csv, txt, arff]
  3035.        datasets:
  3036.            - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  3037.                       ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  3038.                       ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  3039.                       ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  3040.                       ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  3041.                       ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  3042.                       ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  3043.                       ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  3044.                       ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  3045.                       ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  3046.                       ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  3047.                       ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  3048.     LDA:
  3049.             run: ['metric']
  3050.             script: methods/R/lda.py
  3051.             format: [csv, txt, arff]
  3052.             datasets:
  3053.                 - files: [ ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  3054.                            ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  3055.                            ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  3056.                            ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  3057.                            ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  3058.                            ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  3059.                            ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  3060.                            ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  3061.                            ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  3062.                            ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  3063.                            ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
  3064.     LASSO:
  3065.         run: ['metric']
  3066.         iteration: 3
  3067.         script: methods/R/lasso.py
  3068.         format: [csv, txt]
  3069.         datasets:
  3070.             - files: [ ['datasets/diabetes_X.csv', 'datasets/diabetes_y.csv'],
  3071.                        ['datasets/cosExp_X.csv', 'datasets/cosExp_y.csv'],
  3072.                        ['datasets/arcene_X.csv', 'datasets/arcene_y.csv'],
  3073.                        ['datasets/madelon_X.csv', 'datasets/madelon_y.csv']]
  3074.               options:
  3075.                  lambda1: 0.01
  3076.  
  3077.     LinearRegression:
  3078.         run: ['metric']
  3079.         iteration: 3
  3080.         script: methods/R/linear_regression.py
  3081.         format: [csv, txt, arff]
  3082.         datasets:
  3083.              - files: [ ['datasets/diabetes_X.csv'], ['datasets/cosExp_X.csv'],
  3084.                         ['datasets/mnist_all.csv'], ['datasets/tinyImages100k.csv'],
  3085.                         ['datasets/ticdata2000.csv'], ['datasets/TomsHardware.csv'],
  3086.                         ['datasets/madelon_train.csv', 'datasets/madelon_test.csv'],
  3087.                         ['datasets/arcene_train.csv', 'datasets/arcene_test.csv'] ]
  3088.     SVR:
  3089.         run: ['metric']
  3090.         iteration: 3
  3091.         script: methods/scikit/svr.py
  3092.         format: [csv, txt]
  3093.         datasets:
  3094.             - files: [ ['datasets/diabetes.csv'],
  3095.                        ['datasets/cosExp.csv'],
  3096.                        ['datasets/TomsHardware.csv']]
  3097.               options:
  3098.                 c: 1.0
  3099.                 epsilon: 1.0
  3100.                 gamma: 0.1
  3101.  
  3102. ---
  3103. # dlibml
  3104. library: dlibml
  3105. methods:
  3106.     ANN:
  3107.         run: ['metric']
  3108.         script: methods/dlibml/ANN.py
  3109.         format: [csv, txt]
  3110.         datasets:
  3111.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  3112.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  3113.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  3114.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  3115.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  3116.               options:
  3117.                 k: 3
  3118.                 num: 10000
  3119.                 sample_pct: 0.5
  3120.     ALLKNN:
  3121.         run: ['metric']
  3122.         iteration: 3
  3123.         script: methods/dlibml/ALLKNN.py
  3124.         format: [csv, txt]
  3125.         datasets:
  3126.             - files: ['datasets/wine.csv', 'datasets/cloud.csv',
  3127.                       'datasets/wine_qual.csv', 'datasets/isolet.csv',
  3128.                       'datasets/corel-histogram.csv', 'datasets/covtype.csv',
  3129.                       'datasets/1000000-10-randu.csv', 'datasets/mnist_all.csv',
  3130.                       'datasets/Twitter.csv', 'datasets/tinyImages100k.csv']
  3131.               options:
  3132.                 k: 3
  3133.  
  3134.     KMEANS:
  3135.         run: ['metric']
  3136.         script: methods/dlibml/KMEANS.py
  3137.         format: [csv, txt, arff]
  3138.         datasets:
  3139.             - files: [ ['datasets/waveform.csv', 'datasets/waveform_centroids.csv'] ]
  3140.               options:
  3141.                 clusters: 2
  3142.  
  3143.             - files: [ ['datasets/wine.csv', 'datasets/wine_centroids.csv'],
  3144.                        ['datasets/iris.csv', 'datasets/iris_centroids.csv'] ]
  3145.               options:
  3146.                 clusters: 3
  3147.  
  3148.             - files: [ ['datasets/cloud.csv', 'datasets/cloud_centroids.csv'] ]
  3149.               options:
  3150.                 clusters: 5
  3151.  
  3152.             - files: [ ['datasets/USCensus1990.csv', 'datasets/USCensus1990_centroids.csv'] ]
  3153.               options:
  3154.                 clusters: 6
  3155.  
  3156.             - files: [ ['datasets/covtype.csv', 'datasets/covtype_centroids.csv'],
  3157.                        ['datasets/wine_qual.csv', 'datasets/wine_qual_centroids.csv'] ]
  3158.               options:
  3159.                 clusters: 7
  3160.  
  3161.             - files: [ ['datasets/isolet.csv', 'datasets/isolet_centroids.csv'] ]
  3162.               options:
  3163.                 clusters: 26
  3164.  
  3165.             - files: [ ['datasets/mnist_all.csv', 'datasets/mnist_all_centroids.csv'],
  3166.                        ['datasets/corel-histogram.csv', 'datasets/corel-histogram_centroids.csv'] ]
  3167.               options:
  3168.                 clusters: 10
  3169.  
  3170.             - files: [ ['datasets/1000000-10-randu.csv'] ]
  3171.               options:
  3172.                 clusters: 75
  3173.     SVM:
  3174.         run: ['metric']
  3175.         script: methods/dlibml/SVM.py
  3176.         format: [csv, txt, arff]
  3177.         datasets:
  3178.             - files: [ ['datasets/iris_train.csv', 'datasets/iris_test.csv', 'datasets/iris_labels.csv'],
  3179.                        ['datasets/oilspill_train.csv', 'datasets/oilspill_test.csv', 'datasets/oilspill_labels.csv'],
  3180.                        ['datasets/scene_train.csv', 'datasets/scene_test.csv', 'datasets/scene_labels.csv'],
  3181.                        ['datasets/webpage_train.csv', 'datasets/webpage_test.csv', 'datasets/webpage_labels.csv'],
  3182.                        ['datasets/isolet_train.csv', 'datasets/isolet_test.csv', 'datasets/isolet_labels.csv'],
  3183.                        ['datasets/mammography_train.csv', 'datasets/mammography_test.csv', 'datasets/mammography_labels.csv'],
  3184.                        ['datasets/reuters_train.csv', 'datasets/reuters_test.csv', 'datasets/reuters_labels.csv'],
  3185.                        ['datasets/abalone19_train.csv', 'datasets/abalone19_test.csv', 'datasets/abalone19_labels.csv'],
  3186.                        ['datasets/sickEuthyroid_train.csv', 'datasets/sickEuthyroid_test.csv', 'datasets/sickEuthyroid_labels.csv'],
  3187.                        ['datasets/abalone7_train.csv', 'datasets/abalone7_test.csv', 'datasets/abalone7_labels.csv'],
  3188.                        ['datasets/satellite_train.csv', 'datasets/satellite_test.csv', 'datasets/satellite_labels.csv'],
  3189.                        ['datasets/ecoli_train.csv', 'datasets/ecoli_test.csv', 'datasets/ecoli_labels.csv'] ]
Add Comment
Please, Sign In to add comment