lalkaed

16_2

Jun 6th, 2018
37
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 3.64 KB | None | 0 0
  1. % kolos 01.06.2016 u Matyasika
  2. % oryginalny tekst znajduje si� tu:
  3. % http://www.kernel-machines.org/publications/pdfs/0701907.pdf
  4.  
  5. \documentclass[leqno, a4paper,12pt]{article}
  6. \usepackage[latin2]{inputenc}
  7. \usepackage[T1]{fontenc}
  8. \usepackage{amssymb} %
  9. \usepackage{amsthm}  % matma
  10. \usepackage{amsmath} %
  11. \usepackage[english]{babel}
  12. \usepackage{times}
  13. \usepackage{anysize}
  14. \usepackage{titlesec}
  15.  
  16. \usepackage{fancyhdr} % headery i footery
  17.  
  18. % definicje subsekcji i subsubsekcji
  19. \titleformat{\subsection}[runin]
  20.  {\normalfont\fontsize{12}{17}\slshape}
  21.  {\thesubsection}
  22.  {1em}
  23.  {}
  24.  
  25. \titleformat{\subsubsection} [runin]
  26.  {\normalfont\fontsize{12}{17}\slshape}
  27.  {\thesubsubsection}
  28.  {1em}
  29.  {}
  30.        
  31. % numer sekcji zacznie si� od...
  32. \setcounter{section}{4}
  33. \setcounter{subsection}{1}
  34. \setcounter{page}{37}
  35. \setcounter{equation}{79}
  36.  
  37. % definicje headera i footera
  38. \pagestyle{fancy}
  39. \fancyhf{}
  40. \renewcommand{\headrulewidth}{0pt} % brak kreski pod headerem
  41.  
  42. \chead{KERNEL METHODS IN MACHINE LEARNING}
  43. \rhead{\thepage}
  44.  
  45.  
  46.  
  47. \begin{document}
  48.  
  49. \noindent summary, $F(\mathcal{S}) \sim \mathcal{N}(0,K)$. This induces a predictive model via Bayesian model integration according to
  50.  
  51. \begin{equation}
  52. \label{80}
  53. p(y|x;\mathcal{S}) = \int p(y|F(x,\cdot))p(F|\mathcal{S})dF,
  54. \end{equation}
  55.  
  56. \noindent where $x$ is a test point that has been included in the sample (transductive setting).
  57. For an i.i.d. sample, the log-posterior for $F$ can be written as
  58.  
  59. \begin{equation}
  60. \label{81}
  61. \ln p(F|\mathcal{S}) = - \frac{1}{2}F^T \boldsymbol{K}^{-1} F + \sum_{i=1}^{n}[f(x_i,y_i)-g(x_i,F)] + const.
  62. \end{equation}
  63.  
  64. \noindent Invoking the representer theorem for $\hat{F}(\mathcal{S}) := \arg\max _F\ln p(F|\mathcal{S})$, we know
  65. that
  66.  
  67. \begin{equation}
  68. \label{82}
  69. \hat{F}(\mathcal{S})_{iy} = \sum_{j=1}^{n}\sum_{y'\in \mathcal{Y}} \alpha_{iy} K_{iy,jy'},
  70. \end{equation}
  71.  
  72. \noindent which we plug into equation (\ref{81}) to arrive at
  73.  
  74. \begin{equation}
  75. \label{83}
  76. \min\limits_\alpha \alpha^T \boldsymbol{K}\alpha - \sum_{i=1}^{n}\bigg(\alpha^T \boldsymbol{K}e_{iy'}+\log \sum_{y \in \mathcal{Y}} \exp[\alpha^T \boldsymbol{K}e_iy]\bigg),
  77. \end{equation}
  78.  
  79. \noindent where $e_{iy}$ denotes the respective unit vector. Notice that for
  80. $ f(\cdot) = \sum_{i,y} \alpha_{iy} k(\cdot,(x_i,y)) $
  81. the first term is equivalent to the squared RKHS norm of $f \in \mathcal{H} $ since \\
  82. $ \langle f,f \rangle _\mathcal{H} = \sum_{i,j} \sum_{y,y'} \alpha_{iy} \alpha_{jy'} \langle k(\cdot,(x_i,y)),k(\cdot,(x_j,y'))\rangle $.
  83. The latter inner product reduces to $ k((x_i,y),(x_j,y')) $
  84. due to the reproducing property. Again, the
  85. key issue in solving (\ref{83}) is how to achieve spareness in the expansion for $\hat{F}$.
  86.  
  87. \subsection{Markov networks and kernels.} In Section 4.1 no assumptions about
  88. the specific structure of the joint kernel defining the model in equation
  89. (70) has been made. In the following, we will focus on a more specific
  90. setting with multiple outputs, where dependencies are modeled by a
  91. conditional independence graph. This approach is motivated by the fact
  92. that independently predicting individual responses based on marginal
  93. response models will often be suboptimal and explicitly modeling these
  94. interactions can be of crucial importance.
  95.  
  96.  
  97. \subsubsection{Markov networks and factorization theorem.} Denote predictor
  98. variables by $X$, response variables by $Y$ and define $Z := (X,Y)$
  99. with associated sample space $\mathcal{Z}$. We use Markov networks as the modeling formalism for representing dependencies between covariates and
  100. response variables, as well as interdependencies among response variables.
  101.  
  102. \end{document}
Add Comment
Please, Sign In to add comment