Advertisement
ProjectWhite

The Health Effects of Veganism

Feb 22nd, 2020
2,611
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 15.53 KB | None | 0 0
  1. Copied to condense /nsg/ copypasta: https://pastebin.com/kgPi1sJ2
  2.  
  3. Badger TM, et al. Developmental effects and health aspects of soy protein isolate, casein, and whey in male and female rats. Int J Toxicol. 2001 May-Jun;20(3):165-74.
  4. https://sci-hub.tw/10.1080/109158101317097755
  5.  
  6. Hakkak R, et al. Soy protein isolate consumption protects against azoxymethane-induced colon tumors in male rats. Cancer Epidemiol Biomarkers Prev. 2001 May;10(5):555-8.
  7. https://sci-hub.se/https://www.sciencedirect.com/science/article/abs/pii/S0304383501004414
  8.  
  9. Hakkak R, et al. Diets containing whey proteins or soy protein isolate protect against 7,12-dimethylbenz(a)anthracene-induced mammary tumors in female rats. Cancer Epidemiol Biomarkers Prev. 2000 Jan;9(1):113-7.
  10. https://www.ncbi.nlm.nih.gov/pubmed/10667471
  11.  
  12. McIntosh GH, et al. Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in rats. J Nutr. 1995 Apr;125(4):809-16.
  13. https://www.ncbi.nlm.nih.gov/pubmed/?term=Dairy+proteins+protect+against+dimethylhydrazine-induced+intestinal+cancers+in+rats
  14.  
  15. Papenburg R, et al. Dietary milk proteins inhibit the development of dimethylhydrazine-induced malignancy. Tumour Biol. 1990;11(3):129-36.
  16. https://sci-hub.se/10.1159/000217647
  17.  
  18. Bounous G, et al. Dietary whey protein inhibits the development of dimethylhydrazine induced malignancy. Clin Invest Med. 1988 Jun;11(3):213-7.
  19. https://www.ncbi.nlm.nih.gov/pubmed/3402106
  20.  
  21. Kennedy RS, et al. The use of a whey protein concentrate in the treatment of patients with metastatic carcinoma: a phase I-II clinical study. Anticancer Research, Nov-Dec, 1995; 15 (6B): 2643-2649.
  22. https://www.ncbi.nlm.nih.gov/pubmed/?term=The+use+of+a+whey+protein+concentrate+in+the+treatment+of+patients+with+metastatic+carcinoma%3A+a+phase+I-II+clinical+study
  23.  
  24. Morrison LM. A nutritional program for prolongation of life in coronary atherosclerosis. Journal of the American Medical Association, Dec 10, 1955; 159 (15): 1425-1428.
  25. https://sci-hub.se/10.1001/jama.1955.02960320001001
  26.  
  27. Morrison LM. Diet in coronary atherosclerosis. Journal of the American Medical Association, Jun 25, 1960; 173: 884-888.
  28. https://sci-hub.se/10.1001/jama.1960.03020260024006
  29.  
  30. Schnyder G, et al. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. Journal of the American Medical Association, Aug 28, 2002; 288 (8): 973-979.
  31. https://sci-hub.se/10.1001/jama.288.8.973
  32.  
  33. Korpela H, et al. Effect of selenium supplementation after acute myocardial infarction. Research Communications in Chemical Pathology and Pharmacology, Aug, 1989; 65 (2): 249-252.
  34. https://www.ncbi.nlm.nih.gov/pubmed/?term=Effect+of+selenium+supplementation+after+acute+myocardial+infarction.
  35.  
  36. Clark LC, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. Journal of the American Medical Association, Dec 25, 1996; 276 (24): 1957-1963.
  37. https://www.ncbi.nlm.nih.gov/pubmed/8971064
  38.  
  39. Yu SY, et al. Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biological Trace Element Research, 1997; 56 (1): 117-124.
  40. https://sci-hub.se/10.1007/bf02778987
  41.  
  42. Blot WJ, et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. Journal of the National Cancer Institute, Sep 15, 1993; 85 (18): 1483-1492.
  43. https://sci-hub.se/10.1093/jnci/85.18.1483
  44.  
  45. Hercberg S, et al. The SU.VI.MAX Study: A Randomized, Placebo-Controlled Trial of the Health Effects of Antioxidant Vitamins and Minerals. Archives of Internal Medicine, Nov 2004; 164: 2335-2342.
  46. https://sci-hub.se/10.1001/archinte.164.21.2335
  47.  
  48. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Molecular And Cellular Biochemistry, Feb, 2003; 244 (1-2): 89-94.
  49. https://www.ncbi.nlm.nih.gov/pubmed/12701815
  50.  
  51. Maughan RJ. Creatine supplementation and exercise performance. International Journal of Sport Nutrition, Jun, 1995; 5 (2): 94-101.
  52. https://sci-hub.se/10.1123/ijsn.5.2.94
  53.  
  54. Laidlow SA, et al. The taurine content of common foodstuffs. Journal of Parenteral Enteral Nutrition, Mar-Apr, 1990; 14 (2): 183-188.
  55. https://sci-hub.se/10.1177/0148607190014002183
  56.  
  57. Pasantes-Morales H, et al. Taurine content in foods. Nutr Rep Int, 1989; 40: 793-801.
  58.  
  59. Schaffer SW, et al. Interaction between the actions of taurine and angiotensin II. Amino Acids, 2000; 18 (4): 305-318.
  60. https://sci-hub.se/10.1007/pl00010320
  61.  
  62. Azuma J, et al. Therapeutic effect of taurine in congestive heart failure: a double-blind crossover trial. Clin Cardiol. 1985 May; 8 (5): 276-282.
  63. https://sci-hub.se/10.1002/clc.4960080507
  64.  
  65. Azuma J, et al. Double-blind randomized crossover trial of taurine in congestive heart failure. Curr Ther Res 1983; 34 (4): 543-57.
  66.  
  67. Laidlaw SA, et al. Plasma and urine taurine levels in vegans. American Journal of Clinical Nutrition, 1988; 47: 660-663.
  68. https://sci-hub.se/10.1093/ajcn/47.4.660
  69.  
  70. Pasantes-Morales H, et al. Taurine content in breast milk of Mexican women from urban and rural areas. Arch Med Res. 1995 Spring; 26 (1): 47-52.
  71. https://www.ncbi.nlm.nih.gov/pubmed/?term=Taurine+content+in+breast+milk+of+Mexican+women+from+urban+and+rural+areas
  72.  
  73. Davini P, et al. Controlled study on L-carnitine therapeutic efficacy in post-infarction. Drugs Under Experimental And Clinical Research, 1992; 18: 355-365.
  74. https://www.ncbi.nlm.nih.gov/pubmed/?term=Controlled+study+on+L-carnitine+therapeutic+efficacy+in+post-infarction
  75.  
  76. Rizos I. Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. American Heart Journal, Feb, 2000; 139 (2, Pt 3): S120-123.
  77. https://sci-hub.se/10.1067/mhj.2000.103917
  78.  
  79. Singh RB, et al. A randomised, double-blind, placebo-controlled trial of L-carnitine in suspected acute myocardial infarction. Postgraduate Medical Journal, Jan. 199; 72 (843): 45-50.
  80. https://sci-hub.se/10.1136/pgmj.72.843.45
  81.  
  82. Iliceto S, et al. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) Trial. Journal Of The American College Of Cardiology, Aug. 1995; 26 (2): 380-387.
  83. https://sci-hub.se/10.1016/0735-1097(95)80010-e
  84.  
  85. Kelly GS. L-Carnitine: Therapeutic Applications of a Conditionally-Essential Amino Acid. Alternative Medicine Review, 1998; 3 (5): 345-360.
  86. https://www.ncbi.nlm.nih.gov/pubmed/?term=L-Carnitine%3A+Therapeutic+Applications+of+a+Conditionally-Essential+Amino+Acid
  87.  
  88. Davini P, et al. Controlled study on L-carnitine therapeutic efficacy in post-infarction. Drugs Under Experimental And Clinical Research, 1992; 18: 355-365.
  89. https://www.ncbi.nlm.nih.gov/pubmed/?term=Controlled+study+on+L-carnitine+therapeutic+efficacy+in+post-infarction.
  90.  
  91. Cavallini G, et al. Carnitine versus androgen administration in the treatment of sexual dysfunction, depressed mood, and fatigue associated with male aging. Urology, Apr 2004; 63 (4): 641-646.
  92. https://sci-hub.se/10.1016/j.urology.2003.11.009
  93.  
  94. Gentile V, et al. Preliminary Observations on the Use of Propionyl-L-Carnitine in Combination With Sildenafil in Patients With Erectile Dysfunction and Diabetes. Current Medical Research and Opinion, September 2004; 20 (9): 1377-1384.
  95. https://sci-hub.se/10.1185/030079904X2394
  96.  
  97. Krajcovicova-Kudlackova M, et al. Correlation of carnitine levels to methionine and lysine intake. Physiological Research, 2000; 49 (3): 399-402.
  98. https://www.ncbi.nlm.nih.gov/pubmed/11043928
  99.  
  100. Lombard KA, et al. Carnitine status of lactoovovegetarians and strict vegetarian adults and children. American Journal of Clinical Nutrition, Aug, 1989; 50 (2): 301-306.
  101. https://sci-hub.se/10.1093/ajcn/50.2.301
  102.  
  103. Cederblad G. Effect of diet on plasma carnitine levels and urinary carnitine excretion in humans. American Journal of Clinical Nutrition, 1987; 45: 725-729.
  104. https://sci-hub.se/10.1093/ajcn/45.4.725
  105.  
  106. Chan KM, Decker EA. Endogenous skeletal muscle antioxidants. Critical reviews in food science and nutrition, 1994; 34 (4): 403-26.
  107. https://sci-hub.se/10.1080/10408399409527669
  108.  
  109. Hipkiss AR. Carnosine. a protective, anti-ageing peptide? International Journal of Biochemistry & Cell Biology, 1998; 30: S63-868.
  110. https://sci-hub.se/10.1016/s1357-2725(98)00060-0
  111.  
  112. Price DL, et al. Chelating Activity of Advanced Glycation End-product Inhibitors. Journal of Biological Chemistry, Dec. 28, 2001; 276 (52): 48967-48972.
  113. https://sci-hub.se/10.1074/jbc.M108196200
  114.  
  115. Sebekova K, et al. Plasma levels of advanced glycation end products in healthy, long-term vegetarians and subjects on a western mixed diet. European Journal of Nutrition, Dec, 2001; 40 (6): 275-281.
  116. https://sci-hub.se/10.1007/s394-001-8356-3
  117.  
  118. Verdon F, et al. Iron supplementation for unexplained fatigue in non-anaemic women: double-blind randomised placebo controlled trial. British Medical Journal, May 24, 2003; 326: 1124-1128.
  119. https://sci-hub.se/10.1136/bmj.326.7399.1124
  120.  
  121. Patterson AJ, et al. Dietary and Supplement Treatment of Iron Deficiency Results in Improvements in General Health and Fatigue in Australian Women of Childbearing Age. Journal of the American College of Nutrition, 2001; 20 (4): 337-342.
  122. https://sci-hub.se/10.1080/07315724.2001.10719054
  123.  
  124. RM Lyle, et al. Iron status in exercising women: the effect of oral iron therapy vs increased consumption of muscle foods. American Journal of Clinical Nutrition, Dec 1992; 56: 1049 - 1055.
  125. https://sci-hub.se/10.1093/ajcn/56.6.1049
  126.  
  127. Alexander D, et al. Nutrient intake and haematological status of vegetarians and age-sex matched omnivores. European Journal of Clinical Nutrition, 1994 Aug; 48 (8): 538-46.
  128. https://www.ncbi.nlm.nih.gov/pubmed/?term=Nutrient+intake+and+haematological+status+of+vegetarians+and+age-sex+matched+omnivores
  129.  
  130. Hunt JR, Roughead ZK. Adaptation of iron absorption in men consuming diets with high or low iron bioavailability. American Journal of Clinical Nutrition, Jan 2000; 71: 94 - 102.
  131. https://sci-hub.se/10.1093/ajcn/71.1.94
  132.  
  133. Prasad AS. Zinc deficiency. British Medical Journal, Feb. 22, 2003; 326 (7386): 409-410.
  134. https://sci-hub.se/10.1136/bmj.326.7386.409
  135.  
  136. Brown KH, et al. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, June 2002; 75 (6): 1062-1071.
  137. https://sci-hub.se/10.1093/ajcn/75.6.1062
  138.  
  139. Siklar Z, et al. Zinc Deficiency: a Contributing Factor of Short Stature in Growth Hormone Deficient Children. Journal of Tropical Pediatrics, June 2003; 49 (3): 187-188.
  140. https://sci-hub.se/10.1093/tropej/49.3.187
  141.  
  142. Dardenne M. Zinc and immune function. European Journal of Clinical Nutrition, Aug, 2002; 56 (Suppl. 3): S20-23.
  143. https://sci-hub.se/10.1038/sj.ejcn.1601479
  144.  
  145. Ibs KH, Rink L. Zinc-altered immune function. Journal of Nutrition, May, 2003; 133 (5, Suppl. 1): 1452S-1456S.
  146. https://sci-hub.se/10.1093/jn/133.5.1452S
  147.  
  148. Maes M, et al. Hypozincemia in depression. Journal of Affective Disorders, June, 1994; 31 (2): 135-140.
  149. https://sci-hub.se/10.1016/0165-0327(94)90117-1
  150.  
  151. Nakaji S, et al. Relationship between mineral and trace element concentrations in drinking water and gastric cancer mortality in Japan. Nutrition and Cancer, 2001; 40 (2): 99-102.
  152. https://sci-hub.se/10.1207/S15327914NC402_4
  153.  
  154. Prasad AS, et al. Zinc status and serum testosterone levels of healthy adults. Nutrition, May 1996; 12 (5): 344-348.
  155. https://sci-hub.se/10.1016/s0899-9007(96)80058-x
  156.  
  157. Hunt CD, et al. Effects of dietary zinc depletion on seminal volume and zinc loss, serum testosterone concentrations, and sperm morphology in young men. American Journal of Clinical Nutrition, July, 1992; 56 (1): 148-57.
  158. https://sci-hub.se/10.1093/ajcn/56.1.148
  159.  
  160. Hambidge M. Human zinc deficiency. Journal of Nutrition, May, 2000; 130 (Suppl. 5): 1344S-1349S.
  161. https://sci-hub.se/10.1093/jn/130.5.1344S
  162.  
  163. Retzlaff BM, et al. Changes in vitamin and mineral intakes and serum concentrations among free-living men on cholesterol-lowering diets: the Dietary Alternatives Study. American Journal of Clinical Nutrition, 1991; 53 (4): 890-898.
  164. https://sci-hub.se/10.1093/ajcn/53.4.890
  165.  
  166. Baghurst KI, et al. Demographic and dietary profiles of high and low fat consumers in Australia. Journal of Epidemiology and Community Health, 1994; 48 (1): 26-32.
  167. https://sci-hub.se/10.1136/jech.48.1.26
  168.  
  169. Fokkema MR, et al. Short-term supplementation of low-dose gamma-linolenic acid (GLA), alpha-linolenic acid (ALA), or GLA plus ALA does not augment LCP omega 3 status of Dutch vegans to an appreciable extent. Prostaglandins Leukot Essent Fatty Acids, 2000; 63 (5): 287-92.
  170. https://sci-hub.se/10.1054/plef.2000.0216
  171.  
  172. Francois CA, et al. Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk. American Journal Clinical Nutrition, 2003 Jan;77(1):226-33.
  173. https://sci-hub.se/10.1093/ajcn/77.1.226
  174.  
  175. Tang AB, et al. Preferential reduction in adipose alpha-linolenic acid (19:3n-3) during very low caloric dieting despite supplementation with 18:3n-3. Lipids, 1993; 28: 987-93.
  176. https://sci-hub.se/10.1007/bf02537119
  177.  
  178. Rosell MR, et al. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. American Journal of Clinical Nutrition, 2005; 82: 327-334.
  179. https://sci-hub.se/10.1093/ajcn.82.2.327
  180.  
  181. Williams C, et al. Stereoacuity at age 3.5 y in children born full-term is associated with prenatal and postnatal dietary factors: a report from a population-based cohort study. American Journal of Clinical Nutrition, Vol. 73, No. 2, 316-322, February 2001.
  182. https://sci-hub.se/10.1093/ajcn/73.2.316
  183.  
  184. O'Connor DL, et al. Growth and Development in Preterm Infants Fed Long-Chain Polyunsaturated Fatty Acids: A Prospective, Randomized Controlled Trial. Pediatrics, August 1, 2001; 108(2): 359 - 371.
  185. https://sci-hub.se/10.1542/peds.108.2.359
  186.  
  187. Helland IB, et al. Maternal Supplementation With Very-Long-Chain n-3 Fatty Acids During Pregnancy and Lactation Augments Children's IQ at 4 Years of Age. Pediatrics, January 2003; 111 (1): e39-e44.
  188. https://sci-hub.se/10.1542/peds.111.1.e39
  189.  
  190. Moriguchi T, et al. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. Journal of Neurochemistry, 2000; 75: 2563-2573.
  191. https://sci-hub.se/10.1046/j.1471-4159.2000.0752563.x
  192.  
  193. Dunstan JA, et al. Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. Journal of Allergy and Clinical Immunology, Dec, 2003; 112 (6): 1178-1184.
  194. https://sci-hub.se/10.1016/j.jaci.2003.09.009
  195.  
  196. Li D, et al. The association of diet and thrombotic risk factors in healthy male vegetarians and meat-eaters. European Journal of Clinical Nutrition, 1999; 53: 612-619.
  197. https://sci-hub.se/10.1038/sj.ejcn.1600817
  198.  
  199. Mezzano D, et al. Vegetarians and cardiovascular risk factors: hemostasis, inflammatory markers and plasma homocysteine. Thrombosis and Haemostasis, 1999; 81 (6): 913-917.
  200. https://www.ncbi.nlm.nih.gov/pubmed/?term=Vegetarians+and+cardiovascular+risk+factors%3A+hemostasis%2C+inflammatory+markers+and+plasma+homocysteine.
  201.  
  202. Chen J, et al. Diet, life-style, and mortality in China: A study of the characteristics of 65 Chinese counties. Oxford, UK; Ithaca, N.Y. Oxford University Press; Cornell University Press, 1990.
  203. https://sci-hub.se/10.1093/ije/23.6.1127
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement