Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- inputs = Input((IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS))
- s = Lambda(lambda x: x / 255) (inputs)
- c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (s)
- c1 = Dropout(0.1) (c1)
- c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c1)
- p1 = MaxPooling2D((2, 2)) (c1)
- c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p1)
- c2 = Dropout(0.1) (c2)
- c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c2)
- p2 = MaxPooling2D((2, 2)) (c2)
- c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p2)
- c3 = Dropout(0.2) (c3)
- c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c3)
- p3 = MaxPooling2D((2, 2)) (c3)
- c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p3)
- c4 = Dropout(0.2) (c4)
- c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c4)
- p4 = MaxPooling2D(pool_size=(2, 2)) (c4)
- c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p4)
- c5 = Dropout(0.3) (c5)
- c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c5)
- u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same') (c5)
- u6 = concatenate([u6, c4])
- c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u6)
- c6 = Dropout(0.2) (c6)
- c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c6)
- u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c6)
- u7 = concatenate([u7, c3])
- c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u7)
- c7 = Dropout(0.2) (c7)
- c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c7)
- u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c7)
- u8 = concatenate([u8, c2])
- c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u8)
- c8 = Dropout(0.1) (c8)
- c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c8)
- u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c8)
- u9 = concatenate([u9, c1], axis=3)
- c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u9)
- c9 = Dropout(0.1) (c9)
- c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c9)
- outputs = Conv2D(1, (1, 1), activation='sigmoid') (c9)
- model = Model(inputs=[inputs], outputs=[outputs])
- #Valor originial do learning_rate = 0.001
- #optimizer = tf.keras.optimizers.Adam(lr=0.00001)
- #optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.00001)
- optimizer = tf.keras.optimizers.SGD(learning_rate=0.00001)
- model.compile(optimizer=optimizer, loss='binary_crossentropy',metrics=["accuracy", Precision(name="precision")],)
- #model.summary()
Advertisement
Add Comment
Please, Sign In to add comment