Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ## https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
- ## Check stable diffusion base checkpoint version:
- ## python qwerty.py model_to_check.ckpt model1.ckpt model2.ckpt model3.ckpt
- from safetensors.torch import load_file
- import sys
- import torch
- from pathlib import Path
- import torch.nn as nn
- import torch.nn.functional as F
- def cal_cross_attn(to_q, to_k, to_v, rand_input):
- hidden_dim, embed_dim = to_q.shape
- attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
- attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False)
- attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False)
- attn_to_q.load_state_dict({"weight": to_q})
- attn_to_k.load_state_dict({"weight": to_k})
- attn_to_v.load_state_dict({"weight": to_v})
- return torch.einsum(
- "ik, jk -> ik",
- F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1),
- attn_to_v(rand_input)
- )
- def model_hash(filename):
- try:
- with open(filename, "rb") as file:
- import hashlib
- m = hashlib.sha256()
- file.seek(0x100000)
- m.update(file.read(0x10000))
- return m.hexdigest()[0:8]
- except FileNotFoundError:
- return 'NOFILE'
- def load_model(path):
- if path.suffix == ".safetensors":
- return load_file(path, device="cpu")
- else:
- ckpt = torch.load(path, map_location="cpu")
- return ckpt["state_dict"] if "state_dict" in ckpt else ckpt
- def eval(model, n, input):
- qk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight"
- uk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_k.weight"
- vk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_v.weight"
- atoq, atok, atov = model[qk], model[uk], model[vk]
- attn = cal_cross_attn(atoq, atok, atov, input)
- return attn
- def main():
- file1 = Path(sys.argv[1])
- files = sys.argv[2:]
- seed = 114514
- torch.manual_seed(seed)
- print(f"seed: {seed}")
- model_a = load_model(file1)
- print()
- print(f"base: {file1.name} [{model_hash(file1)}]")
- print()
- map_attn_a = {}
- map_rand_input = {}
- for n in range(3, 11):
- hidden_dim, embed_dim = model_a[f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight"].shape
- rand_input = torch.randn([embed_dim, hidden_dim])
- map_attn_a[n] = eval(model_a, n, rand_input)
- map_rand_input[n] = rand_input
- del model_a
- for file2 in files:
- file2 = Path(file2)
- model_b = load_model(file2)
- sims = []
- for n in range(3, 11):
- attn_a = map_attn_a[n]
- attn_b = eval(model_b, n, map_rand_input[n])
- sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
- sims.append(sim)
- print(f"{file2} [{model_hash(file2)}] - {torch.mean(torch.stack(sims)) * 1e2:.2f}%")
- if __name__ == "__main__":
- main()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement