Advertisement
Guest User

Untitled

a guest
Sep 20th, 2019
223
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 261.17 KB | None | 0 0
  1. (deterministic) timeout
  2. scratch.lean:9:0: information trace output
  3. [class_instances] class-instance resolution trace
  4. [class_instances] (0) ?x_3 : has_coe_to_fun
  5. (@submodule ℤ A
  6. (@domain.to_ring ℤ
  7. (@to_domain ℤ
  8. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  9. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  10. int.decidable_linear_ordered_comm_ring))))
  11. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  12. (@algebra.module ℤ A
  13. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  14. (@comm_ring.to_ring A _inst_1)
  15. (@algebra_int A _inst_1))) := @alg_hom.has_coe_to_fun ?x_4 ?x_5 ?x_6 ?x_7 ?x_8 ?x_9 ?x_10 ?x_11
  16. failed is_def_eq
  17. [class_instances] (0) ?x_3 : has_coe_to_fun
  18. (@submodule ℤ A
  19. (@domain.to_ring ℤ
  20. (@to_domain ℤ
  21. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  22. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  23. int.decidable_linear_ordered_comm_ring))))
  24. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  25. (@algebra.module ℤ A
  26. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  27. (@comm_ring.to_ring A _inst_1)
  28. (@algebra_int A _inst_1))) := @direct_sum.has_coe_to_fun ?x_12 ?x_13 ?x_14 ?x_15
  29. failed is_def_eq
  30. [class_instances] (0) ?x_3 : has_coe_to_fun
  31. (@submodule ℤ A
  32. (@domain.to_ring ℤ
  33. (@to_domain ℤ
  34. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  35. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  36. int.decidable_linear_ordered_comm_ring))))
  37. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  38. (@algebra.module ℤ A
  39. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  40. (@comm_ring.to_ring A _inst_1)
  41. (@algebra_int A _inst_1))) := @dfinsupp.has_coe_to_fun ?x_16 ?x_17 ?x_18
  42. failed is_def_eq
  43. [class_instances] (0) ?x_3 : has_coe_to_fun
  44. (@submodule ℤ A
  45. (@domain.to_ring ℤ
  46. (@to_domain ℤ
  47. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  48. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  49. int.decidable_linear_ordered_comm_ring))))
  50. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  51. (@algebra.module ℤ A
  52. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  53. (@comm_ring.to_ring A _inst_1)
  54. (@algebra_int A _inst_1))) := @cau_seq.has_coe_to_fun ?x_19 ?x_20 ?x_21 ?x_22 ?x_23
  55. failed is_def_eq
  56. [class_instances] (0) ?x_3 : has_coe_to_fun
  57. (@submodule ℤ A
  58. (@domain.to_ring ℤ
  59. (@to_domain ℤ
  60. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  61. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  62. int.decidable_linear_ordered_comm_ring))))
  63. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  64. (@algebra.module ℤ A
  65. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  66. (@comm_ring.to_ring A _inst_1)
  67. (@algebra_int A _inst_1))) := @order_embedding.has_coe_to_fun ?x_24 ?x_25 ?x_26 ?x_27
  68. failed is_def_eq
  69. [class_instances] (0) ?x_3 : has_coe_to_fun
  70. (@submodule ℤ A
  71. (@domain.to_ring ℤ
  72. (@to_domain ℤ
  73. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  74. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  75. int.decidable_linear_ordered_comm_ring))))
  76. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  77. (@algebra.module ℤ A
  78. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  79. (@comm_ring.to_ring A _inst_1)
  80. (@algebra_int A _inst_1))) := @add_equiv.has_coe_to_fun ?x_28 ?x_29 ?x_30 ?x_31
  81. failed is_def_eq
  82. [class_instances] (0) ?x_3 : has_coe_to_fun
  83. (@submodule ℤ A
  84. (@domain.to_ring ℤ
  85. (@to_domain ℤ
  86. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  87. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  88. int.decidable_linear_ordered_comm_ring))))
  89. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  90. (@algebra.module ℤ A
  91. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  92. (@comm_ring.to_ring A _inst_1)
  93. (@algebra_int A _inst_1))) := @mul_equiv.has_coe_to_fun ?x_32 ?x_33 ?x_34 ?x_35
  94. failed is_def_eq
  95. [class_instances] (0) ?x_3 : has_coe_to_fun
  96. (@submodule ℤ A
  97. (@domain.to_ring ℤ
  98. (@to_domain ℤ
  99. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  100. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  101. int.decidable_linear_ordered_comm_ring))))
  102. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  103. (@algebra.module ℤ A
  104. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  105. (@comm_ring.to_ring A _inst_1)
  106. (@algebra_int A _inst_1))) := @finsupp.has_coe_to_fun ?x_36 ?x_37 ?x_38
  107. failed is_def_eq
  108. [class_instances] (0) ?x_3 : has_coe_to_fun
  109. (@submodule ℤ A
  110. (@domain.to_ring ℤ
  111. (@to_domain ℤ
  112. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  113. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  114. int.decidable_linear_ordered_comm_ring))))
  115. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  116. (@algebra.module ℤ A
  117. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  118. (@comm_ring.to_ring A _inst_1)
  119. (@algebra_int A _inst_1))) := @linear_map.has_coe_to_fun ?x_39 ?x_40 ?x_41 ?x_42 ?x_43 ?x_44 ?x_45 ?x_46
  120. failed is_def_eq
  121. [class_instances] (0) ?x_3 : has_coe_to_fun
  122. (@submodule ℤ A
  123. (@domain.to_ring ℤ
  124. (@to_domain ℤ
  125. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  126. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  127. int.decidable_linear_ordered_comm_ring))))
  128. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  129. (@algebra.module ℤ A
  130. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  131. (@comm_ring.to_ring A _inst_1)
  132. (@algebra_int A _inst_1))) := @ring_hom.has_coe_to_fun ?x_47 ?x_48 ?x_49 ?x_50
  133. failed is_def_eq
  134. [class_instances] (0) ?x_3 : has_coe_to_fun
  135. (@submodule ℤ A
  136. (@domain.to_ring ℤ
  137. (@to_domain ℤ
  138. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  139. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  140. int.decidable_linear_ordered_comm_ring))))
  141. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  142. (@algebra.module ℤ A
  143. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  144. (@comm_ring.to_ring A _inst_1)
  145. (@algebra_int A _inst_1))) := @add_monoid_hom.has_coe_to_fun ?x_51 ?x_52 ?x_53 ?x_54
  146. failed is_def_eq
  147. [class_instances] (0) ?x_3 : has_coe_to_fun
  148. (@submodule ℤ A
  149. (@domain.to_ring ℤ
  150. (@to_domain ℤ
  151. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  152. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  153. int.decidable_linear_ordered_comm_ring))))
  154. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  155. (@algebra.module ℤ A
  156. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  157. (@comm_ring.to_ring A _inst_1)
  158. (@algebra_int A _inst_1))) := @monoid_hom.has_coe_to_fun ?x_55 ?x_56 ?x_57 ?x_58
  159. failed is_def_eq
  160. [class_instances] (0) ?x_3 : has_coe_to_fun
  161. (@submodule ℤ A
  162. (@domain.to_ring ℤ
  163. (@to_domain ℤ
  164. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  165. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  166. int.decidable_linear_ordered_comm_ring))))
  167. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  168. (@algebra.module ℤ A
  169. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  170. (@comm_ring.to_ring A _inst_1)
  171. (@algebra_int A _inst_1))) := @function.has_coe_to_fun ?x_59 ?x_60
  172. failed is_def_eq
  173. [class_instances] (0) ?x_3 : has_coe_to_fun
  174. (@submodule ℤ A
  175. (@domain.to_ring ℤ
  176. (@to_domain ℤ
  177. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  178. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  179. int.decidable_linear_ordered_comm_ring))))
  180. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  181. (@algebra.module ℤ A
  182. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  183. (@comm_ring.to_ring A _inst_1)
  184. (@algebra_int A _inst_1))) := @equiv.has_coe_to_fun ?x_61 ?x_62
  185. failed is_def_eq
  186. [class_instances] (0) ?x_3 : has_coe_to_fun
  187. (@submodule ℤ A
  188. (@domain.to_ring ℤ
  189. (@to_domain ℤ
  190. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  191. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  192. int.decidable_linear_ordered_comm_ring))))
  193. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  194. (@algebra.module ℤ A
  195. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  196. (@comm_ring.to_ring A _inst_1)
  197. (@algebra_int A _inst_1))) := @applicative_transformation.has_coe_to_fun ?x_63 ?x_64 ?x_65 ?x_66 ?x_67 ?x_68
  198. failed is_def_eq
  199. [class_instances] (0) ?x_3 : has_coe_to_fun
  200. (@submodule ℤ A
  201. (@domain.to_ring ℤ
  202. (@to_domain ℤ
  203. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  204. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  205. int.decidable_linear_ordered_comm_ring))))
  206. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  207. (@algebra.module ℤ A
  208. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  209. (@comm_ring.to_ring A _inst_1)
  210. (@algebra_int A _inst_1))) := @expr.has_coe_to_fun ?x_69
  211. failed is_def_eq
  212. [class_instances] (0) ?x_3 : has_coe_to_fun
  213. (@submodule ℤ A
  214. (@domain.to_ring ℤ
  215. (@to_domain ℤ
  216. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  217. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  218. int.decidable_linear_ordered_comm_ring))))
  219. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  220. (@algebra.module ℤ A
  221. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  222. (@comm_ring.to_ring A _inst_1)
  223. (@algebra_int A _inst_1))) := @coe_fn_trans ?x_70 ?x_71 ?x_72 ?x_73
  224. [class_instances] (1) ?x_72 : has_coe_t_aux
  225. (@submodule ℤ A
  226. (@domain.to_ring ℤ
  227. (@to_domain ℤ
  228. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  229. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  230. int.decidable_linear_ordered_comm_ring))))
  231. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  232. (@algebra.module ℤ A
  233. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  234. (@comm_ring.to_ring A _inst_1)
  235. (@algebra_int A _inst_1)))
  236. ?x_71 := @coe_base_aux ?x_74 ?x_75 ?x_76
  237. [class_instances] (2) ?x_76 : has_coe
  238. (@submodule ℤ A
  239. (@domain.to_ring ℤ
  240. (@to_domain ℤ
  241. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  242. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  243. int.decidable_linear_ordered_comm_ring))))
  244. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  245. (@algebra.module ℤ A
  246. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  247. (@comm_ring.to_ring A _inst_1)
  248. (@algebra_int A _inst_1)))
  249. ?x_75 := @lean.parser.has_coe' ?x_77
  250. failed is_def_eq
  251. [class_instances] (2) ?x_76 : has_coe
  252. (@submodule ℤ A
  253. (@domain.to_ring ℤ
  254. (@to_domain ℤ
  255. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  256. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  257. int.decidable_linear_ordered_comm_ring))))
  258. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  259. (@algebra.module ℤ A
  260. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  261. (@comm_ring.to_ring A _inst_1)
  262. (@algebra_int A _inst_1)))
  263. ?x_75 := @subalgebra.coe_to_submodule ?x_78 ?x_79 ?x_80 ?x_81 ?x_82
  264. failed is_def_eq
  265. [class_instances] (2) ?x_76 : has_coe
  266. (@submodule ℤ A
  267. (@domain.to_ring ℤ
  268. (@to_domain ℤ
  269. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  270. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  271. int.decidable_linear_ordered_comm_ring))))
  272. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  273. (@algebra.module ℤ A
  274. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  275. (@comm_ring.to_ring A _inst_1)
  276. (@algebra_int A _inst_1)))
  277. ?x_75 := @subalgebra.has_coe ?x_83 ?x_84 ?x_85 ?x_86 ?x_87
  278. failed is_def_eq
  279. [class_instances] (2) ?x_76 : has_coe
  280. (@submodule ℤ A
  281. (@domain.to_ring ℤ
  282. (@to_domain ℤ
  283. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  284. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  285. int.decidable_linear_ordered_comm_ring))))
  286. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  287. (@algebra.module ℤ A
  288. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  289. (@comm_ring.to_ring A _inst_1)
  290. (@algebra_int A _inst_1)))
  291. ?x_75 := complex.has_coe
  292. failed is_def_eq
  293. [class_instances] (2) ?x_76 : has_coe
  294. (@submodule ℤ A
  295. (@domain.to_ring ℤ
  296. (@to_domain ℤ
  297. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  298. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  299. int.decidable_linear_ordered_comm_ring))))
  300. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  301. (@algebra.module ℤ A
  302. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  303. (@comm_ring.to_ring A _inst_1)
  304. (@algebra_int A _inst_1)))
  305. ?x_75 := tactic.abel.has_coe
  306. failed is_def_eq
  307. [class_instances] (2) ?x_76 : has_coe
  308. (@submodule ℤ A
  309. (@domain.to_ring ℤ
  310. (@to_domain ℤ
  311. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  312. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  313. int.decidable_linear_ordered_comm_ring))))
  314. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  315. (@algebra.module ℤ A
  316. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  317. (@comm_ring.to_ring A _inst_1)
  318. (@algebra_int A _inst_1)))
  319. ?x_75 := int.snum_coe
  320. failed is_def_eq
  321. [class_instances] (2) ?x_76 : has_coe
  322. (@submodule ℤ A
  323. (@domain.to_ring ℤ
  324. (@to_domain ℤ
  325. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  326. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  327. int.decidable_linear_ordered_comm_ring))))
  328. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  329. (@algebra.module ℤ A
  330. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  331. (@comm_ring.to_ring A _inst_1)
  332. (@algebra_int A _inst_1)))
  333. ?x_75 := snum.has_coe
  334. failed is_def_eq
  335. [class_instances] (2) ?x_76 : has_coe
  336. (@submodule ℤ A
  337. (@domain.to_ring ℤ
  338. (@to_domain ℤ
  339. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  340. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  341. int.decidable_linear_ordered_comm_ring))))
  342. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  343. (@algebra.module ℤ A
  344. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  345. (@comm_ring.to_ring A _inst_1)
  346. (@algebra_int A _inst_1)))
  347. ?x_75 := tactic.ring.has_coe
  348. failed is_def_eq
  349. [class_instances] (2) ?x_76 : has_coe
  350. (@submodule ℤ A
  351. (@domain.to_ring ℤ
  352. (@to_domain ℤ
  353. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  354. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  355. int.decidable_linear_ordered_comm_ring))))
  356. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  357. (@algebra.module ℤ A
  358. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  359. (@comm_ring.to_ring A _inst_1)
  360. (@algebra_int A _inst_1)))
  361. ?x_75 := @linear_equiv.has_coe ?x_88 ?x_89 ?x_90 ?x_91 ?x_92 ?x_93 ?x_94 ?x_95
  362. failed is_def_eq
  363. [class_instances] (2) ?x_76 : has_coe
  364. (@submodule ℤ A
  365. (@domain.to_ring ℤ
  366. (@to_domain ℤ
  367. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  368. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  369. int.decidable_linear_ordered_comm_ring))))
  370. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  371. (@algebra.module ℤ A
  372. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  373. (@comm_ring.to_ring A _inst_1)
  374. (@algebra_int A _inst_1)))
  375. ?x_75 := @order_iso.has_coe ?x_96 ?x_97 ?x_98 ?x_99
  376. failed is_def_eq
  377. [class_instances] (2) ?x_76 : has_coe
  378. (@submodule ℤ A
  379. (@domain.to_ring ℤ
  380. (@to_domain ℤ
  381. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  382. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  383. int.decidable_linear_ordered_comm_ring))))
  384. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
  385. (@algebra.module ℤ A
  386. (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  387. (@comm_ring.to_ring A _inst_1)
  388. (@algebra_int A _inst_1)))
  389. ?x_75 := @submodule.has_coe ?x_100 ?x_101 ?x_102 ?x_103 ?x_104
  390. [class_instances] (3) ?x_102 : ring ℤ := @subalgebra.ring ?x_105 ?x_106 ?x_107 ?x_108 ?x_109 ?x_110
  391. failed is_def_eq
  392. [class_instances] (3) ?x_102 : ring ℤ := @algebra.comap.ring ?x_111 ?x_112 ?x_113 ?x_114 ?x_115 ?x_116 ?x_117 ?x_118
  393. failed is_def_eq
  394. [class_instances] (3) ?x_102 : ring ℤ := @free_abelian_group.ring ?x_119 ?x_120
  395. failed is_def_eq
  396. [class_instances] (3) ?x_102 : ring ℤ := real.ring
  397. failed is_def_eq
  398. [class_instances] (3) ?x_102 : ring ℤ := @cau_seq.ring ?x_121 ?x_122 ?x_123 ?x_124 ?x_125 ?x_126
  399. failed is_def_eq
  400. [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.polynomial_ring2 ?x_127 ?x_128 ?x_129
  401. failed is_def_eq
  402. [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.polynomial_ring ?x_130 ?x_131 ?x_132
  403. failed is_def_eq
  404. [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.option_ring ?x_133 ?x_134 ?x_135
  405. failed is_def_eq
  406. [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.ring_on_iter ?x_136 ?x_137 ?x_138 ?x_139
  407. failed is_def_eq
  408. [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.ring_on_sum ?x_140 ?x_141 ?x_142 ?x_143
  409. failed is_def_eq
  410. [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.ring ?x_144 ?x_145 ?x_146
  411. failed is_def_eq
  412. [class_instances] (3) ?x_102 : ring ℤ := @linear_map.endomorphism_ring ?x_147 ?x_148 ?x_149 ?x_150 ?x_151
  413. failed is_def_eq
  414. [class_instances] (3) ?x_102 : ring ℤ := @prod.ring ?x_152 ?x_153 ?x_154 ?x_155
  415. failed is_def_eq
  416. [class_instances] (3) ?x_102 : ring ℤ := @pi.ring ?x_156 ?x_157 ?x_158
  417. failed is_def_eq
  418. [class_instances] (3) ?x_102 : ring ℤ := @subtype.ring ?x_159 ?x_160 ?x_161 ?x_162
  419. failed is_def_eq
  420. [class_instances] (3) ?x_102 : ring ℤ := @subset.ring ?x_163 ?x_164 ?x_165 ?x_166
  421. failed is_def_eq
  422. [class_instances] (3) ?x_102 : ring ℤ := @finsupp.ring ?x_167 ?x_168 ?x_169 ?x_170
  423. failed is_def_eq
  424. [class_instances] (3) ?x_102 : ring ℤ := @nonneg_ring.to_ring ?x_171 ?x_172
  425. [class_instances] (4) ?x_172 : nonneg_ring ℤ := @linear_nonneg_ring.to_nonneg_ring ?x_173 ?x_174
  426. [class_instances] (3) ?x_102 : ring ℤ := @domain.to_ring ?x_105 ?x_106
  427. [class_instances] (4) ?x_106 : domain ℤ := real.domain
  428. failed is_def_eq
  429. [class_instances] (4) ?x_106 : domain ℤ := @division_ring.to_domain ?x_107 ?x_108
  430. [class_instances] (5) ?x_108 : division_ring ℤ := real.division_ring
  431. failed is_def_eq
  432. [class_instances] (5) ?x_108 : division_ring ℤ := rat.division_ring
  433. failed is_def_eq
  434. [class_instances] (5) ?x_108 : division_ring ℤ := @field.to_division_ring ?x_109 ?x_110
  435. [class_instances] (6) ?x_110 : field ℤ := real.field
  436. failed is_def_eq
  437. [class_instances] (6) ?x_110 : field ℤ := rat.field
  438. failed is_def_eq
  439. [class_instances] (6) ?x_110 : field ℤ := @linear_ordered_field.to_field ?x_111 ?x_112
  440. [class_instances] (7) ?x_112 : linear_ordered_field ℤ := real.linear_ordered_field
  441. failed is_def_eq
  442. [class_instances] (7) ?x_112 : linear_ordered_field ℤ := rat.linear_ordered_field
  443. failed is_def_eq
  444. [class_instances] (7) ?x_112 : linear_ordered_field ℤ := @discrete_linear_ordered_field.to_linear_ordered_field ?x_113 ?x_114
  445. [class_instances] (8) ?x_114 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  446. failed is_def_eq
  447. [class_instances] (8) ?x_114 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  448. failed is_def_eq
  449. [class_instances] (6) ?x_110 : field ℤ := @discrete_field.to_field ?x_111 ?x_112
  450. [class_instances] (7) ?x_112 : discrete_field ℤ := complex.discrete_field
  451. failed is_def_eq
  452. [class_instances] (7) ?x_112 : discrete_field ℤ := real.discrete_field
  453. failed is_def_eq
  454. [class_instances] (7) ?x_112 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_113 ?x_114
  455. failed is_def_eq
  456. [class_instances] (7) ?x_112 : discrete_field ℤ := rat.discrete_field
  457. failed is_def_eq
  458. [class_instances] (7) ?x_112 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_115 ?x_116
  459. [class_instances] (8) ?x_116 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  460. failed is_def_eq
  461. [class_instances] (8) ?x_116 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  462. failed is_def_eq
  463. [class_instances] (4) ?x_106 : domain ℤ := @linear_nonneg_ring.to_domain ?x_107 ?x_108
  464. [class_instances] (4) ?x_106 : domain ℤ := @to_domain ?x_107 ?x_108
  465. [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := real.linear_ordered_ring
  466. failed is_def_eq
  467. [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := rat.linear_ordered_ring
  468. failed is_def_eq
  469. [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := @linear_nonneg_ring.to_linear_ordered_ring ?x_109 ?x_110
  470. [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := @linear_ordered_field.to_linear_ordered_ring ?x_109 ?x_110
  471. [class_instances] (6) ?x_110 : linear_ordered_field ℤ := real.linear_ordered_field
  472. failed is_def_eq
  473. [class_instances] (6) ?x_110 : linear_ordered_field ℤ := rat.linear_ordered_field
  474. failed is_def_eq
  475. [class_instances] (6) ?x_110 : linear_ordered_field ℤ := @discrete_linear_ordered_field.to_linear_ordered_field ?x_111 ?x_112
  476. [class_instances] (7) ?x_112 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  477. failed is_def_eq
  478. [class_instances] (7) ?x_112 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  479. failed is_def_eq
  480. [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_109 ?x_110
  481. [class_instances] (6) ?x_110 : linear_ordered_comm_ring ℤ := real.linear_ordered_comm_ring
  482. failed is_def_eq
  483. [class_instances] (6) ?x_110 : linear_ordered_comm_ring ℤ := rat.linear_ordered_comm_ring
  484. failed is_def_eq
  485. [class_instances] (6) ?x_110 : linear_ordered_comm_ring ℤ := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_111 ?x_112
  486. [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := real.decidable_linear_ordered_comm_ring
  487. failed is_def_eq
  488. [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := rat.decidable_linear_ordered_comm_ring
  489. failed is_def_eq
  490. [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_113 ?x_114 ?x_115 ?x_116
  491. [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := int.decidable_linear_ordered_comm_ring
  492. [class_instances] (3) ?x_103 : add_comm_group A := @tensor_product.add_comm_group ?x_113 ?x_114 ?x_115 ?x_116 ?x_117 ?x_118 ?x_119 ?x_120
  493. failed is_def_eq
  494. [class_instances] (3) ?x_103 : add_comm_group A := @direct_sum.add_comm_group ?x_121 ?x_122 ?x_123 ?x_124
  495. failed is_def_eq
  496. [class_instances] (3) ?x_103 : add_comm_group A := @dfinsupp.add_comm_group ?x_125 ?x_126 ?x_127
  497. failed is_def_eq
  498. [class_instances] (3) ?x_103 : add_comm_group A := free_abelian_group.add_comm_group ?x_128
  499. failed is_def_eq
  500. [class_instances] (3) ?x_103 : add_comm_group A := @quotient_add_group.add_comm_group ?x_129 ?x_130 ?x_131 ?x_132
  501. failed is_def_eq
  502. [class_instances] (3) ?x_103 : add_comm_group A := real.add_comm_group
  503. failed is_def_eq
  504. [class_instances] (3) ?x_103 : add_comm_group A := @submodule.quotient.add_comm_group ?x_133 ?x_134 ?x_135 ?x_136 ?x_137 ?x_138
  505. failed is_def_eq
  506. [class_instances] (3) ?x_103 : add_comm_group A := @linear_map.add_comm_group ?x_139 ?x_140 ?x_141 ?x_142 ?x_143 ?x_144 ?x_145 ?x_146
  507. failed is_def_eq
  508. [class_instances] (3) ?x_103 : add_comm_group A := @prod.add_comm_group ?x_147 ?x_148 ?x_149 ?x_150
  509. failed is_def_eq
  510. [class_instances] (3) ?x_103 : add_comm_group A := @pi.add_comm_group ?x_151 ?x_152 ?x_153
  511. failed is_def_eq
  512. [class_instances] (3) ?x_103 : add_comm_group A := @finsupp.add_comm_group ?x_154 ?x_155 ?x_156
  513. failed is_def_eq
  514. [class_instances] (3) ?x_103 : add_comm_group A := @submodule.add_comm_group ?x_157 ?x_158 ?x_159 ?x_160 ?x_161 ?x_162
  515. failed is_def_eq
  516. [class_instances] (3) ?x_103 : add_comm_group A := @subtype.add_comm_group ?x_163 ?x_164 ?x_165 ?x_166
  517. failed is_def_eq
  518. [class_instances] (3) ?x_103 : add_comm_group A := rat.add_comm_group
  519. failed is_def_eq
  520. [class_instances] (3) ?x_103 : add_comm_group A := @nonneg_comm_group.to_add_comm_group ?x_167 ?x_168
  521. [class_instances] (4) ?x_168 : nonneg_comm_group A := @linear_nonneg_ring.to_nonneg_comm_group ?x_169 ?x_170
  522. [class_instances] (4) ?x_168 : nonneg_comm_group A := @nonneg_ring.to_nonneg_comm_group ?x_169 ?x_170
  523. [class_instances] (5) ?x_170 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_171 ?x_172
  524. [class_instances] (3) ?x_103 : add_comm_group A := @additive.add_comm_group ?x_113 ?x_114
  525. failed is_def_eq
  526. [class_instances] (3) ?x_103 : add_comm_group A := @add_monoid_hom.add_comm_group ?x_115 ?x_116 ?x_117 ?x_118
  527. failed is_def_eq
  528. [class_instances] (3) ?x_103 : add_comm_group A := @ring.to_add_comm_group ?x_119 ?x_120
  529. [class_instances] (4) ?x_120 : ring A := @subalgebra.ring ?x_121 ?x_122 ?x_123 ?x_124 ?x_125 ?x_126
  530. failed is_def_eq
  531. [class_instances] (4) ?x_120 : ring A := @algebra.comap.ring ?x_127 ?x_128 ?x_129 ?x_130 ?x_131 ?x_132 ?x_133 ?x_134
  532. failed is_def_eq
  533. [class_instances] (4) ?x_120 : ring A := @free_abelian_group.ring ?x_135 ?x_136
  534. failed is_def_eq
  535. [class_instances] (4) ?x_120 : ring A := real.ring
  536. failed is_def_eq
  537. [class_instances] (4) ?x_120 : ring A := @cau_seq.ring ?x_137 ?x_138 ?x_139 ?x_140 ?x_141 ?x_142
  538. failed is_def_eq
  539. [class_instances] (4) ?x_120 : ring A := @mv_polynomial.polynomial_ring2 ?x_143 ?x_144 ?x_145
  540. failed is_def_eq
  541. [class_instances] (4) ?x_120 : ring A := @mv_polynomial.polynomial_ring ?x_146 ?x_147 ?x_148
  542. failed is_def_eq
  543. [class_instances] (4) ?x_120 : ring A := @mv_polynomial.option_ring ?x_149 ?x_150 ?x_151
  544. failed is_def_eq
  545. [class_instances] (4) ?x_120 : ring A := @mv_polynomial.ring_on_iter ?x_152 ?x_153 ?x_154 ?x_155
  546. failed is_def_eq
  547. [class_instances] (4) ?x_120 : ring A := @mv_polynomial.ring_on_sum ?x_156 ?x_157 ?x_158 ?x_159
  548. failed is_def_eq
  549. [class_instances] (4) ?x_120 : ring A := @mv_polynomial.ring ?x_160 ?x_161 ?x_162
  550. failed is_def_eq
  551. [class_instances] (4) ?x_120 : ring A := @linear_map.endomorphism_ring ?x_163 ?x_164 ?x_165 ?x_166 ?x_167
  552. failed is_def_eq
  553. [class_instances] (4) ?x_120 : ring A := @prod.ring ?x_168 ?x_169 ?x_170 ?x_171
  554. failed is_def_eq
  555. [class_instances] (4) ?x_120 : ring A := @pi.ring ?x_172 ?x_173 ?x_174
  556. failed is_def_eq
  557. [class_instances] (4) ?x_120 : ring A := @subtype.ring ?x_175 ?x_176 ?x_177 ?x_178
  558. failed is_def_eq
  559. [class_instances] (4) ?x_120 : ring A := @subset.ring ?x_179 ?x_180 ?x_181 ?x_182
  560. failed is_def_eq
  561. [class_instances] (4) ?x_120 : ring A := @finsupp.ring ?x_183 ?x_184 ?x_185 ?x_186
  562. failed is_def_eq
  563. [class_instances] (4) ?x_120 : ring A := @nonneg_ring.to_ring ?x_187 ?x_188
  564. [class_instances] (5) ?x_188 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_189 ?x_190
  565. [class_instances] (4) ?x_120 : ring A := @domain.to_ring ?x_121 ?x_122
  566. [class_instances] (5) ?x_122 : domain A := real.domain
  567. failed is_def_eq
  568. [class_instances] (5) ?x_122 : domain A := @division_ring.to_domain ?x_123 ?x_124
  569. [class_instances] (6) ?x_124 : division_ring A := real.division_ring
  570. failed is_def_eq
  571. [class_instances] (6) ?x_124 : division_ring A := rat.division_ring
  572. failed is_def_eq
  573. [class_instances] (6) ?x_124 : division_ring A := @field.to_division_ring ?x_125 ?x_126
  574. [class_instances] (7) ?x_126 : field A := real.field
  575. failed is_def_eq
  576. [class_instances] (7) ?x_126 : field A := rat.field
  577. failed is_def_eq
  578. [class_instances] (7) ?x_126 : field A := @linear_ordered_field.to_field ?x_127 ?x_128
  579. [class_instances] (8) ?x_128 : linear_ordered_field A := real.linear_ordered_field
  580. failed is_def_eq
  581. [class_instances] (8) ?x_128 : linear_ordered_field A := rat.linear_ordered_field
  582. failed is_def_eq
  583. [class_instances] (8) ?x_128 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_129 ?x_130
  584. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  585. failed is_def_eq
  586. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  587. failed is_def_eq
  588. [class_instances] (7) ?x_126 : field A := @discrete_field.to_field ?x_127 ?x_128
  589. [class_instances] (8) ?x_128 : discrete_field A := complex.discrete_field
  590. failed is_def_eq
  591. [class_instances] (8) ?x_128 : discrete_field A := real.discrete_field
  592. failed is_def_eq
  593. [class_instances] (8) ?x_128 : discrete_field A := @local_ring.residue_field.discrete_field ?x_129 ?x_130
  594. failed is_def_eq
  595. [class_instances] (8) ?x_128 : discrete_field A := rat.discrete_field
  596. failed is_def_eq
  597. [class_instances] (8) ?x_128 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_131 ?x_132
  598. [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  599. failed is_def_eq
  600. [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  601. failed is_def_eq
  602. [class_instances] (5) ?x_122 : domain A := @linear_nonneg_ring.to_domain ?x_123 ?x_124
  603. [class_instances] (5) ?x_122 : domain A := @to_domain ?x_123 ?x_124
  604. [class_instances] (6) ?x_124 : linear_ordered_ring A := real.linear_ordered_ring
  605. failed is_def_eq
  606. [class_instances] (6) ?x_124 : linear_ordered_ring A := rat.linear_ordered_ring
  607. failed is_def_eq
  608. [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_125 ?x_126
  609. [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_125 ?x_126
  610. [class_instances] (7) ?x_126 : linear_ordered_field A := real.linear_ordered_field
  611. failed is_def_eq
  612. [class_instances] (7) ?x_126 : linear_ordered_field A := rat.linear_ordered_field
  613. failed is_def_eq
  614. [class_instances] (7) ?x_126 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_127 ?x_128
  615. [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  616. failed is_def_eq
  617. [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  618. failed is_def_eq
  619. [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_125 ?x_126
  620. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  621. failed is_def_eq
  622. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  623. failed is_def_eq
  624. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_127 ?x_128
  625. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  626. failed is_def_eq
  627. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  628. failed is_def_eq
  629. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130 ?x_131 ?x_132
  630. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  631. failed is_def_eq
  632. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130
  633. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  634. failed is_def_eq
  635. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  636. failed is_def_eq
  637. [class_instances] (5) ?x_122 : domain A := @integral_domain.to_domain ?x_123 ?x_124
  638. [class_instances] (6) ?x_124 : integral_domain A := real.integral_domain
  639. failed is_def_eq
  640. [class_instances] (6) ?x_124 : integral_domain A := @polynomial.integral_domain ?x_125 ?x_126
  641. failed is_def_eq
  642. [class_instances] (6) ?x_124 : integral_domain A := @ideal.quotient.integral_domain ?x_127 ?x_128 ?x_129 ?x_130
  643. failed is_def_eq
  644. [class_instances] (6) ?x_124 : integral_domain A := @subring.domain ?x_131 ?x_132 ?x_133 ?x_134
  645. failed is_def_eq
  646. [class_instances] (6) ?x_124 : integral_domain A := @euclidean_domain.integral_domain ?x_135 ?x_136
  647. [class_instances] (7) ?x_136 : euclidean_domain A := @polynomial.euclidean_domain ?x_137 ?x_138
  648. failed is_def_eq
  649. [class_instances] (7) ?x_136 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_139 ?x_140
  650. [class_instances] (8) ?x_140 : discrete_field A := complex.discrete_field
  651. failed is_def_eq
  652. [class_instances] (8) ?x_140 : discrete_field A := real.discrete_field
  653. failed is_def_eq
  654. [class_instances] (8) ?x_140 : discrete_field A := @local_ring.residue_field.discrete_field ?x_141 ?x_142
  655. failed is_def_eq
  656. [class_instances] (8) ?x_140 : discrete_field A := rat.discrete_field
  657. failed is_def_eq
  658. [class_instances] (8) ?x_140 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_143 ?x_144
  659. [class_instances] (9) ?x_144 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  660. failed is_def_eq
  661. [class_instances] (9) ?x_144 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  662. failed is_def_eq
  663. [class_instances] (7) ?x_136 : euclidean_domain A := int.euclidean_domain
  664. failed is_def_eq
  665. [class_instances] (6) ?x_124 : integral_domain A := @normalization_domain.to_integral_domain ?x_125 ?x_126
  666. [class_instances] (7) ?x_126 : normalization_domain A := @polynomial.normalization_domain ?x_127 ?x_128
  667. failed is_def_eq
  668. [class_instances] (7) ?x_126 : normalization_domain A := int.normalization_domain
  669. failed is_def_eq
  670. [class_instances] (7) ?x_126 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_129 ?x_130
  671. [class_instances] (8) ?x_130 : gcd_domain A := int.gcd_domain
  672. failed is_def_eq
  673. [class_instances] (6) ?x_124 : integral_domain A := rat.integral_domain
  674. failed is_def_eq
  675. [class_instances] (6) ?x_124 : integral_domain A := @field.to_integral_domain ?x_125 ?x_126
  676. [class_instances] (7) ?x_126 : field A := real.field
  677. failed is_def_eq
  678. [class_instances] (7) ?x_126 : field A := rat.field
  679. failed is_def_eq
  680. [class_instances] (7) ?x_126 : field A := @linear_ordered_field.to_field ?x_127 ?x_128
  681. [class_instances] (8) ?x_128 : linear_ordered_field A := real.linear_ordered_field
  682. failed is_def_eq
  683. [class_instances] (8) ?x_128 : linear_ordered_field A := rat.linear_ordered_field
  684. failed is_def_eq
  685. [class_instances] (8) ?x_128 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_129 ?x_130
  686. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  687. failed is_def_eq
  688. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  689. failed is_def_eq
  690. [class_instances] (7) ?x_126 : field A := @discrete_field.to_field ?x_127 ?x_128
  691. [class_instances] (8) ?x_128 : discrete_field A := complex.discrete_field
  692. failed is_def_eq
  693. [class_instances] (8) ?x_128 : discrete_field A := real.discrete_field
  694. failed is_def_eq
  695. [class_instances] (8) ?x_128 : discrete_field A := @local_ring.residue_field.discrete_field ?x_129 ?x_130
  696. failed is_def_eq
  697. [class_instances] (8) ?x_128 : discrete_field A := rat.discrete_field
  698. failed is_def_eq
  699. [class_instances] (8) ?x_128 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_131 ?x_132
  700. [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  701. failed is_def_eq
  702. [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  703. failed is_def_eq
  704. [class_instances] (6) ?x_124 : integral_domain A := @discrete_field.to_integral_domain ?x_125 ?x_126 ?x_127
  705. [class_instances] (7) ?x_126 : discrete_field A := complex.discrete_field
  706. failed is_def_eq
  707. [class_instances] (7) ?x_126 : discrete_field A := real.discrete_field
  708. failed is_def_eq
  709. [class_instances] (7) ?x_126 : discrete_field A := @local_ring.residue_field.discrete_field ?x_128 ?x_129
  710. failed is_def_eq
  711. [class_instances] (7) ?x_126 : discrete_field A := rat.discrete_field
  712. failed is_def_eq
  713. [class_instances] (7) ?x_126 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_130 ?x_131
  714. [class_instances] (8) ?x_131 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  715. failed is_def_eq
  716. [class_instances] (8) ?x_131 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  717. failed is_def_eq
  718. [class_instances] (6) ?x_124 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_125 ?x_126
  719. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  720. failed is_def_eq
  721. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  722. failed is_def_eq
  723. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_127 ?x_128
  724. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  725. failed is_def_eq
  726. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  727. failed is_def_eq
  728. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130 ?x_131 ?x_132
  729. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  730. failed is_def_eq
  731. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130
  732. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  733. failed is_def_eq
  734. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  735. failed is_def_eq
  736. [class_instances] (4) ?x_120 : ring A := int.ring
  737. failed is_def_eq
  738. [class_instances] (4) ?x_120 : ring A := @division_ring.to_ring ?x_121 ?x_122
  739. [class_instances] (5) ?x_122 : division_ring A := real.division_ring
  740. failed is_def_eq
  741. [class_instances] (5) ?x_122 : division_ring A := rat.division_ring
  742. failed is_def_eq
  743. [class_instances] (5) ?x_122 : division_ring A := @field.to_division_ring ?x_123 ?x_124
  744. [class_instances] (6) ?x_124 : field A := real.field
  745. failed is_def_eq
  746. [class_instances] (6) ?x_124 : field A := rat.field
  747. failed is_def_eq
  748. [class_instances] (6) ?x_124 : field A := @linear_ordered_field.to_field ?x_125 ?x_126
  749. [class_instances] (7) ?x_126 : linear_ordered_field A := real.linear_ordered_field
  750. failed is_def_eq
  751. [class_instances] (7) ?x_126 : linear_ordered_field A := rat.linear_ordered_field
  752. failed is_def_eq
  753. [class_instances] (7) ?x_126 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_127 ?x_128
  754. [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  755. failed is_def_eq
  756. [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  757. failed is_def_eq
  758. [class_instances] (6) ?x_124 : field A := @discrete_field.to_field ?x_125 ?x_126
  759. [class_instances] (7) ?x_126 : discrete_field A := complex.discrete_field
  760. failed is_def_eq
  761. [class_instances] (7) ?x_126 : discrete_field A := real.discrete_field
  762. failed is_def_eq
  763. [class_instances] (7) ?x_126 : discrete_field A := @local_ring.residue_field.discrete_field ?x_127 ?x_128
  764. failed is_def_eq
  765. [class_instances] (7) ?x_126 : discrete_field A := rat.discrete_field
  766. failed is_def_eq
  767. [class_instances] (7) ?x_126 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_129 ?x_130
  768. [class_instances] (8) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  769. failed is_def_eq
  770. [class_instances] (8) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  771. failed is_def_eq
  772. [class_instances] (4) ?x_120 : ring A := @ordered_ring.to_ring ?x_121 ?x_122
  773. [class_instances] (5) ?x_122 : ordered_ring A := real.ordered_ring
  774. failed is_def_eq
  775. [class_instances] (5) ?x_122 : ordered_ring A := rat.ordered_ring
  776. failed is_def_eq
  777. [class_instances] (5) ?x_122 : ordered_ring A := @nonneg_ring.to_ordered_ring ?x_123 ?x_124
  778. [class_instances] (6) ?x_124 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_125 ?x_126
  779. [class_instances] (5) ?x_122 : ordered_ring A := @linear_ordered_ring.to_ordered_ring ?x_123 ?x_124
  780. [class_instances] (6) ?x_124 : linear_ordered_ring A := real.linear_ordered_ring
  781. failed is_def_eq
  782. [class_instances] (6) ?x_124 : linear_ordered_ring A := rat.linear_ordered_ring
  783. failed is_def_eq
  784. [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_125 ?x_126
  785. [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_125 ?x_126
  786. [class_instances] (7) ?x_126 : linear_ordered_field A := real.linear_ordered_field
  787. failed is_def_eq
  788. [class_instances] (7) ?x_126 : linear_ordered_field A := rat.linear_ordered_field
  789. failed is_def_eq
  790. [class_instances] (7) ?x_126 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_127 ?x_128
  791. [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  792. failed is_def_eq
  793. [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  794. failed is_def_eq
  795. [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_125 ?x_126
  796. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  797. failed is_def_eq
  798. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  799. failed is_def_eq
  800. [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_127 ?x_128
  801. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  802. failed is_def_eq
  803. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  804. failed is_def_eq
  805. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130 ?x_131 ?x_132
  806. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  807. failed is_def_eq
  808. [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130
  809. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  810. failed is_def_eq
  811. [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  812. failed is_def_eq
  813. [class_instances] (4) ?x_120 : ring A := @comm_ring.to_ring ?x_121 ?x_122
  814. [class_instances] (5) ?x_122 : comm_ring A := _inst_1
  815. [class_instances] (3) ?x_104 : @module ℤ A
  816. (@domain.to_ring ℤ
  817. (@to_domain ℤ
  818. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  819. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  820. int.decidable_linear_ordered_comm_ring))))
  821. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1)) := @algebra.comap.module ?x_123 ?x_124 ?x_125 ?x_126 ?x_127 ?x_128 ?x_129 ?x_130
  822. failed is_def_eq
  823. [class_instances] (3) ?x_104 : @module ℤ A
  824. (@domain.to_ring ℤ
  825. (@to_domain ℤ
  826. (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
  827. (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
  828. int.decidable_linear_ordered_comm_ring))))
  829. (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1)) := @algebra.module ?x_131 ?x_132 ?x_133 ?x_134 ?x_135
  830. [class_instances] class-instance resolution trace
  831. [class_instances] (0) ?x_136 : comm_ring ℤ := _inst_1
  832. failed is_def_eq
  833. [class_instances] (0) ?x_136 : comm_ring ℤ := @subalgebra.comm_ring ?x_137 ?x_138 ?x_139 ?x_140 ?x_141 ?x_142
  834. failed is_def_eq
  835. [class_instances] (0) ?x_136 : comm_ring ℤ := @algebra.comap.comm_ring ?x_143 ?x_144 ?x_145 ?x_146 ?x_147 ?x_148 ?x_149 ?x_150
  836. failed is_def_eq
  837. [class_instances] (0) ?x_136 : comm_ring ℤ := @free_abelian_group.comm_ring ?x_151 ?x_152
  838. failed is_def_eq
  839. [class_instances] (0) ?x_136 : comm_ring ℤ := complex.comm_ring
  840. failed is_def_eq
  841. [class_instances] (0) ?x_136 : comm_ring ℤ := real.comm_ring
  842. failed is_def_eq
  843. [class_instances] (0) ?x_136 : comm_ring ℤ := @cau_seq.completion.comm_ring ?x_153 ?x_154 ?x_155 ?x_156 ?x_157 ?x_158
  844. failed is_def_eq
  845. [class_instances] (0) ?x_136 : comm_ring ℤ := @cau_seq.comm_ring ?x_159 ?x_160 ?x_161 ?x_162 ?x_163 ?x_164
  846. failed is_def_eq
  847. [class_instances] (0) ?x_136 : comm_ring ℤ := @mv_polynomial.comm_ring ?x_165 ?x_166 ?x_167
  848. failed is_def_eq
  849. [class_instances] (0) ?x_136 : comm_ring ℤ := @polynomial.comm_ring ?x_168 ?x_169
  850. failed is_def_eq
  851. [class_instances] (0) ?x_136 : comm_ring ℤ := @local_ring.comm_ring ?x_170 ?x_171
  852. [class_instances] (1) ?x_171 : local_ring ℤ := @discrete_field.local_ring ?x_172 ?x_173
  853. [class_instances] (2) ?x_173 : discrete_field ℤ := complex.discrete_field
  854. failed is_def_eq
  855. [class_instances] (2) ?x_173 : discrete_field ℤ := real.discrete_field
  856. failed is_def_eq
  857. [class_instances] (2) ?x_173 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_174 ?x_175
  858. failed is_def_eq
  859. [class_instances] (2) ?x_173 : discrete_field ℤ := rat.discrete_field
  860. failed is_def_eq
  861. [class_instances] (2) ?x_173 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_176 ?x_177
  862. [class_instances] (3) ?x_177 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  863. failed is_def_eq
  864. [class_instances] (3) ?x_177 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  865. failed is_def_eq
  866. [class_instances] (0) ?x_136 : comm_ring ℤ := @ideal.quotient.comm_ring ?x_137 ?x_138 ?x_139
  867. failed is_def_eq
  868. [class_instances] (0) ?x_136 : comm_ring ℤ := @prod.comm_ring ?x_140 ?x_141 ?x_142 ?x_143
  869. failed is_def_eq
  870. [class_instances] (0) ?x_136 : comm_ring ℤ := @pi.comm_ring ?x_144 ?x_145 ?x_146
  871. failed is_def_eq
  872. [class_instances] (0) ?x_136 : comm_ring ℤ := @subtype.comm_ring ?x_147 ?x_148 ?x_149 ?x_150
  873. failed is_def_eq
  874. [class_instances] (0) ?x_136 : comm_ring ℤ := @subset.comm_ring ?x_151 ?x_152 ?x_153 ?x_154
  875. failed is_def_eq
  876. [class_instances] (0) ?x_136 : comm_ring ℤ := @finsupp.comm_ring ?x_155 ?x_156 ?x_157 ?x_158
  877. failed is_def_eq
  878. [class_instances] (0) ?x_136 : comm_ring ℤ := rat.comm_ring
  879. failed is_def_eq
  880. [class_instances] (0) ?x_136 : comm_ring ℤ := @nonzero_comm_ring.to_comm_ring ?x_159 ?x_160
  881. [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := real.nonzero_comm_ring
  882. failed is_def_eq
  883. [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @polynomial.nonzero_comm_ring ?x_161 ?x_162
  884. failed is_def_eq
  885. [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @local_ring.to_nonzero_comm_ring ?x_163 ?x_164
  886. [class_instances] (2) ?x_164 : local_ring ℤ := @discrete_field.local_ring ?x_165 ?x_166
  887. [class_instances] (3) ?x_166 : discrete_field ℤ := complex.discrete_field
  888. failed is_def_eq
  889. [class_instances] (3) ?x_166 : discrete_field ℤ := real.discrete_field
  890. failed is_def_eq
  891. [class_instances] (3) ?x_166 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_167 ?x_168
  892. failed is_def_eq
  893. [class_instances] (3) ?x_166 : discrete_field ℤ := rat.discrete_field
  894. failed is_def_eq
  895. [class_instances] (3) ?x_166 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_169 ?x_170
  896. [class_instances] (4) ?x_170 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  897. failed is_def_eq
  898. [class_instances] (4) ?x_170 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  899. failed is_def_eq
  900. [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @prod.nonzero_comm_ring ?x_161 ?x_162 ?x_163 ?x_164
  901. failed is_def_eq
  902. [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @euclidean_domain.to_nonzero_comm_ring ?x_165 ?x_166
  903. [class_instances] (2) ?x_166 : euclidean_domain ℤ := @polynomial.euclidean_domain ?x_167 ?x_168
  904. failed is_def_eq
  905. [class_instances] (2) ?x_166 : euclidean_domain ℤ := @discrete_field.to_euclidean_domain ?x_169 ?x_170
  906. [class_instances] (3) ?x_170 : discrete_field ℤ := complex.discrete_field
  907. failed is_def_eq
  908. [class_instances] (3) ?x_170 : discrete_field ℤ := real.discrete_field
  909. failed is_def_eq
  910. [class_instances] (3) ?x_170 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_171 ?x_172
  911. failed is_def_eq
  912. [class_instances] (3) ?x_170 : discrete_field ℤ := rat.discrete_field
  913. failed is_def_eq
  914. [class_instances] (3) ?x_170 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_173 ?x_174
  915. [class_instances] (4) ?x_174 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  916. failed is_def_eq
  917. [class_instances] (4) ?x_174 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  918. failed is_def_eq
  919. [class_instances] (2) ?x_166 : euclidean_domain ℤ := int.euclidean_domain
  920. [class_instances] class-instance resolution trace
  921. [class_instances] (0) ?x_167 : ring A := @subalgebra.ring ?x_168 ?x_169 ?x_170 ?x_171 ?x_172 ?x_173
  922. failed is_def_eq
  923. [class_instances] (0) ?x_167 : ring A := @algebra.comap.ring ?x_174 ?x_175 ?x_176 ?x_177 ?x_178 ?x_179 ?x_180 ?x_181
  924. failed is_def_eq
  925. [class_instances] (0) ?x_167 : ring A := @free_abelian_group.ring ?x_182 ?x_183
  926. failed is_def_eq
  927. [class_instances] (0) ?x_167 : ring A := real.ring
  928. failed is_def_eq
  929. [class_instances] (0) ?x_167 : ring A := @cau_seq.ring ?x_184 ?x_185 ?x_186 ?x_187 ?x_188 ?x_189
  930. failed is_def_eq
  931. [class_instances] (0) ?x_167 : ring A := @mv_polynomial.polynomial_ring2 ?x_190 ?x_191 ?x_192
  932. failed is_def_eq
  933. [class_instances] (0) ?x_167 : ring A := @mv_polynomial.polynomial_ring ?x_193 ?x_194 ?x_195
  934. failed is_def_eq
  935. [class_instances] (0) ?x_167 : ring A := @mv_polynomial.option_ring ?x_196 ?x_197 ?x_198
  936. failed is_def_eq
  937. [class_instances] (0) ?x_167 : ring A := @mv_polynomial.ring_on_iter ?x_199 ?x_200 ?x_201 ?x_202
  938. failed is_def_eq
  939. [class_instances] (0) ?x_167 : ring A := @mv_polynomial.ring_on_sum ?x_203 ?x_204 ?x_205 ?x_206
  940. failed is_def_eq
  941. [class_instances] (0) ?x_167 : ring A := @mv_polynomial.ring ?x_207 ?x_208 ?x_209
  942. failed is_def_eq
  943. [class_instances] (0) ?x_167 : ring A := @linear_map.endomorphism_ring ?x_210 ?x_211 ?x_212 ?x_213 ?x_214
  944. failed is_def_eq
  945. [class_instances] (0) ?x_167 : ring A := @prod.ring ?x_215 ?x_216 ?x_217 ?x_218
  946. failed is_def_eq
  947. [class_instances] (0) ?x_167 : ring A := @pi.ring ?x_219 ?x_220 ?x_221
  948. failed is_def_eq
  949. [class_instances] (0) ?x_167 : ring A := @subtype.ring ?x_222 ?x_223 ?x_224 ?x_225
  950. failed is_def_eq
  951. [class_instances] (0) ?x_167 : ring A := @subset.ring ?x_226 ?x_227 ?x_228 ?x_229
  952. failed is_def_eq
  953. [class_instances] (0) ?x_167 : ring A := @finsupp.ring ?x_230 ?x_231 ?x_232 ?x_233
  954. failed is_def_eq
  955. [class_instances] (0) ?x_167 : ring A := @nonneg_ring.to_ring ?x_234 ?x_235
  956. [class_instances] (1) ?x_235 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_236 ?x_237
  957. [class_instances] (0) ?x_167 : ring A := @domain.to_ring ?x_168 ?x_169
  958. [class_instances] (1) ?x_169 : domain A := real.domain
  959. failed is_def_eq
  960. [class_instances] (1) ?x_169 : domain A := @division_ring.to_domain ?x_170 ?x_171
  961. [class_instances] (2) ?x_171 : division_ring A := real.division_ring
  962. failed is_def_eq
  963. [class_instances] (2) ?x_171 : division_ring A := rat.division_ring
  964. failed is_def_eq
  965. [class_instances] (2) ?x_171 : division_ring A := @field.to_division_ring ?x_172 ?x_173
  966. [class_instances] (3) ?x_173 : field A := real.field
  967. failed is_def_eq
  968. [class_instances] (3) ?x_173 : field A := rat.field
  969. failed is_def_eq
  970. [class_instances] (3) ?x_173 : field A := @linear_ordered_field.to_field ?x_174 ?x_175
  971. [class_instances] (4) ?x_175 : linear_ordered_field A := real.linear_ordered_field
  972. failed is_def_eq
  973. [class_instances] (4) ?x_175 : linear_ordered_field A := rat.linear_ordered_field
  974. failed is_def_eq
  975. [class_instances] (4) ?x_175 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_176 ?x_177
  976. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  977. failed is_def_eq
  978. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  979. failed is_def_eq
  980. [class_instances] (3) ?x_173 : field A := @discrete_field.to_field ?x_174 ?x_175
  981. [class_instances] (4) ?x_175 : discrete_field A := complex.discrete_field
  982. failed is_def_eq
  983. [class_instances] (4) ?x_175 : discrete_field A := real.discrete_field
  984. failed is_def_eq
  985. [class_instances] (4) ?x_175 : discrete_field A := @local_ring.residue_field.discrete_field ?x_176 ?x_177
  986. failed is_def_eq
  987. [class_instances] (4) ?x_175 : discrete_field A := rat.discrete_field
  988. failed is_def_eq
  989. [class_instances] (4) ?x_175 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_178 ?x_179
  990. [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  991. failed is_def_eq
  992. [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  993. failed is_def_eq
  994. [class_instances] (1) ?x_169 : domain A := @linear_nonneg_ring.to_domain ?x_170 ?x_171
  995. [class_instances] (1) ?x_169 : domain A := @to_domain ?x_170 ?x_171
  996. [class_instances] (2) ?x_171 : linear_ordered_ring A := real.linear_ordered_ring
  997. failed is_def_eq
  998. [class_instances] (2) ?x_171 : linear_ordered_ring A := rat.linear_ordered_ring
  999. failed is_def_eq
  1000. [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_172 ?x_173
  1001. [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_172 ?x_173
  1002. [class_instances] (3) ?x_173 : linear_ordered_field A := real.linear_ordered_field
  1003. failed is_def_eq
  1004. [class_instances] (3) ?x_173 : linear_ordered_field A := rat.linear_ordered_field
  1005. failed is_def_eq
  1006. [class_instances] (3) ?x_173 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_174 ?x_175
  1007. [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1008. failed is_def_eq
  1009. [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1010. failed is_def_eq
  1011. [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_172 ?x_173
  1012. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  1013. failed is_def_eq
  1014. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  1015. failed is_def_eq
  1016. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_174 ?x_175
  1017. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  1018. failed is_def_eq
  1019. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  1020. failed is_def_eq
  1021. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177 ?x_178 ?x_179
  1022. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  1023. failed is_def_eq
  1024. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177
  1025. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1026. failed is_def_eq
  1027. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1028. failed is_def_eq
  1029. [class_instances] (1) ?x_169 : domain A := @integral_domain.to_domain ?x_170 ?x_171
  1030. [class_instances] (2) ?x_171 : integral_domain A := real.integral_domain
  1031. failed is_def_eq
  1032. [class_instances] (2) ?x_171 : integral_domain A := @polynomial.integral_domain ?x_172 ?x_173
  1033. failed is_def_eq
  1034. [class_instances] (2) ?x_171 : integral_domain A := @ideal.quotient.integral_domain ?x_174 ?x_175 ?x_176 ?x_177
  1035. failed is_def_eq
  1036. [class_instances] (2) ?x_171 : integral_domain A := @subring.domain ?x_178 ?x_179 ?x_180 ?x_181
  1037. failed is_def_eq
  1038. [class_instances] (2) ?x_171 : integral_domain A := @euclidean_domain.integral_domain ?x_182 ?x_183
  1039. [class_instances] (3) ?x_183 : euclidean_domain A := @polynomial.euclidean_domain ?x_184 ?x_185
  1040. failed is_def_eq
  1041. [class_instances] (3) ?x_183 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_186 ?x_187
  1042. [class_instances] (4) ?x_187 : discrete_field A := complex.discrete_field
  1043. failed is_def_eq
  1044. [class_instances] (4) ?x_187 : discrete_field A := real.discrete_field
  1045. failed is_def_eq
  1046. [class_instances] (4) ?x_187 : discrete_field A := @local_ring.residue_field.discrete_field ?x_188 ?x_189
  1047. failed is_def_eq
  1048. [class_instances] (4) ?x_187 : discrete_field A := rat.discrete_field
  1049. failed is_def_eq
  1050. [class_instances] (4) ?x_187 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_190 ?x_191
  1051. [class_instances] (5) ?x_191 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1052. failed is_def_eq
  1053. [class_instances] (5) ?x_191 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1054. failed is_def_eq
  1055. [class_instances] (3) ?x_183 : euclidean_domain A := int.euclidean_domain
  1056. failed is_def_eq
  1057. [class_instances] (2) ?x_171 : integral_domain A := @normalization_domain.to_integral_domain ?x_172 ?x_173
  1058. [class_instances] (3) ?x_173 : normalization_domain A := @polynomial.normalization_domain ?x_174 ?x_175
  1059. failed is_def_eq
  1060. [class_instances] (3) ?x_173 : normalization_domain A := int.normalization_domain
  1061. failed is_def_eq
  1062. [class_instances] (3) ?x_173 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_176 ?x_177
  1063. [class_instances] (4) ?x_177 : gcd_domain A := int.gcd_domain
  1064. failed is_def_eq
  1065. [class_instances] (2) ?x_171 : integral_domain A := rat.integral_domain
  1066. failed is_def_eq
  1067. [class_instances] (2) ?x_171 : integral_domain A := @field.to_integral_domain ?x_172 ?x_173
  1068. [class_instances] (3) ?x_173 : field A := real.field
  1069. failed is_def_eq
  1070. [class_instances] (3) ?x_173 : field A := rat.field
  1071. failed is_def_eq
  1072. [class_instances] (3) ?x_173 : field A := @linear_ordered_field.to_field ?x_174 ?x_175
  1073. [class_instances] (4) ?x_175 : linear_ordered_field A := real.linear_ordered_field
  1074. failed is_def_eq
  1075. [class_instances] (4) ?x_175 : linear_ordered_field A := rat.linear_ordered_field
  1076. failed is_def_eq
  1077. [class_instances] (4) ?x_175 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_176 ?x_177
  1078. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1079. failed is_def_eq
  1080. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1081. failed is_def_eq
  1082. [class_instances] (3) ?x_173 : field A := @discrete_field.to_field ?x_174 ?x_175
  1083. [class_instances] (4) ?x_175 : discrete_field A := complex.discrete_field
  1084. failed is_def_eq
  1085. [class_instances] (4) ?x_175 : discrete_field A := real.discrete_field
  1086. failed is_def_eq
  1087. [class_instances] (4) ?x_175 : discrete_field A := @local_ring.residue_field.discrete_field ?x_176 ?x_177
  1088. failed is_def_eq
  1089. [class_instances] (4) ?x_175 : discrete_field A := rat.discrete_field
  1090. failed is_def_eq
  1091. [class_instances] (4) ?x_175 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_178 ?x_179
  1092. [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1093. failed is_def_eq
  1094. [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1095. failed is_def_eq
  1096. [class_instances] (2) ?x_171 : integral_domain A := @discrete_field.to_integral_domain ?x_172 ?x_173 ?x_174
  1097. [class_instances] (3) ?x_173 : discrete_field A := complex.discrete_field
  1098. failed is_def_eq
  1099. [class_instances] (3) ?x_173 : discrete_field A := real.discrete_field
  1100. failed is_def_eq
  1101. [class_instances] (3) ?x_173 : discrete_field A := @local_ring.residue_field.discrete_field ?x_175 ?x_176
  1102. failed is_def_eq
  1103. [class_instances] (3) ?x_173 : discrete_field A := rat.discrete_field
  1104. failed is_def_eq
  1105. [class_instances] (3) ?x_173 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_177 ?x_178
  1106. [class_instances] (4) ?x_178 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1107. failed is_def_eq
  1108. [class_instances] (4) ?x_178 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1109. failed is_def_eq
  1110. [class_instances] (2) ?x_171 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_172 ?x_173
  1111. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  1112. failed is_def_eq
  1113. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  1114. failed is_def_eq
  1115. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_174 ?x_175
  1116. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  1117. failed is_def_eq
  1118. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  1119. failed is_def_eq
  1120. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177 ?x_178 ?x_179
  1121. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  1122. failed is_def_eq
  1123. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177
  1124. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1125. failed is_def_eq
  1126. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1127. failed is_def_eq
  1128. [class_instances] (0) ?x_167 : ring A := int.ring
  1129. failed is_def_eq
  1130. [class_instances] (0) ?x_167 : ring A := @division_ring.to_ring ?x_168 ?x_169
  1131. [class_instances] (1) ?x_169 : division_ring A := real.division_ring
  1132. failed is_def_eq
  1133. [class_instances] (1) ?x_169 : division_ring A := rat.division_ring
  1134. failed is_def_eq
  1135. [class_instances] (1) ?x_169 : division_ring A := @field.to_division_ring ?x_170 ?x_171
  1136. [class_instances] (2) ?x_171 : field A := real.field
  1137. failed is_def_eq
  1138. [class_instances] (2) ?x_171 : field A := rat.field
  1139. failed is_def_eq
  1140. [class_instances] (2) ?x_171 : field A := @linear_ordered_field.to_field ?x_172 ?x_173
  1141. [class_instances] (3) ?x_173 : linear_ordered_field A := real.linear_ordered_field
  1142. failed is_def_eq
  1143. [class_instances] (3) ?x_173 : linear_ordered_field A := rat.linear_ordered_field
  1144. failed is_def_eq
  1145. [class_instances] (3) ?x_173 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_174 ?x_175
  1146. [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1147. failed is_def_eq
  1148. [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1149. failed is_def_eq
  1150. [class_instances] (2) ?x_171 : field A := @discrete_field.to_field ?x_172 ?x_173
  1151. [class_instances] (3) ?x_173 : discrete_field A := complex.discrete_field
  1152. failed is_def_eq
  1153. [class_instances] (3) ?x_173 : discrete_field A := real.discrete_field
  1154. failed is_def_eq
  1155. [class_instances] (3) ?x_173 : discrete_field A := @local_ring.residue_field.discrete_field ?x_174 ?x_175
  1156. failed is_def_eq
  1157. [class_instances] (3) ?x_173 : discrete_field A := rat.discrete_field
  1158. failed is_def_eq
  1159. [class_instances] (3) ?x_173 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_176 ?x_177
  1160. [class_instances] (4) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1161. failed is_def_eq
  1162. [class_instances] (4) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1163. failed is_def_eq
  1164. [class_instances] (0) ?x_167 : ring A := @ordered_ring.to_ring ?x_168 ?x_169
  1165. [class_instances] (1) ?x_169 : ordered_ring A := real.ordered_ring
  1166. failed is_def_eq
  1167. [class_instances] (1) ?x_169 : ordered_ring A := rat.ordered_ring
  1168. failed is_def_eq
  1169. [class_instances] (1) ?x_169 : ordered_ring A := @nonneg_ring.to_ordered_ring ?x_170 ?x_171
  1170. [class_instances] (2) ?x_171 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_172 ?x_173
  1171. [class_instances] (1) ?x_169 : ordered_ring A := @linear_ordered_ring.to_ordered_ring ?x_170 ?x_171
  1172. [class_instances] (2) ?x_171 : linear_ordered_ring A := real.linear_ordered_ring
  1173. failed is_def_eq
  1174. [class_instances] (2) ?x_171 : linear_ordered_ring A := rat.linear_ordered_ring
  1175. failed is_def_eq
  1176. [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_172 ?x_173
  1177. [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_172 ?x_173
  1178. [class_instances] (3) ?x_173 : linear_ordered_field A := real.linear_ordered_field
  1179. failed is_def_eq
  1180. [class_instances] (3) ?x_173 : linear_ordered_field A := rat.linear_ordered_field
  1181. failed is_def_eq
  1182. [class_instances] (3) ?x_173 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_174 ?x_175
  1183. [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1184. failed is_def_eq
  1185. [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1186. failed is_def_eq
  1187. [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_172 ?x_173
  1188. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  1189. failed is_def_eq
  1190. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  1191. failed is_def_eq
  1192. [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_174 ?x_175
  1193. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  1194. failed is_def_eq
  1195. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  1196. failed is_def_eq
  1197. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177 ?x_178 ?x_179
  1198. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  1199. failed is_def_eq
  1200. [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177
  1201. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1202. failed is_def_eq
  1203. [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1204. failed is_def_eq
  1205. [class_instances] (0) ?x_167 : ring A := @comm_ring.to_ring ?x_168 ?x_169
  1206. [class_instances] (1) ?x_169 : comm_ring A := _inst_1
  1207. [class_instances] (4) ?x_133 : comm_ring ℤ := _inst_1
  1208. failed is_def_eq
  1209. [class_instances] (4) ?x_133 : comm_ring ℤ := @subalgebra.comm_ring ?x_170 ?x_171 ?x_172 ?x_173 ?x_174 ?x_175
  1210. failed is_def_eq
  1211. [class_instances] (4) ?x_133 : comm_ring ℤ := @algebra.comap.comm_ring ?x_176 ?x_177 ?x_178 ?x_179 ?x_180 ?x_181 ?x_182 ?x_183
  1212. failed is_def_eq
  1213. [class_instances] (4) ?x_133 : comm_ring ℤ := @free_abelian_group.comm_ring ?x_184 ?x_185
  1214. failed is_def_eq
  1215. [class_instances] (4) ?x_133 : comm_ring ℤ := complex.comm_ring
  1216. failed is_def_eq
  1217. [class_instances] (4) ?x_133 : comm_ring ℤ := real.comm_ring
  1218. failed is_def_eq
  1219. [class_instances] (4) ?x_133 : comm_ring ℤ := @cau_seq.completion.comm_ring ?x_186 ?x_187 ?x_188 ?x_189 ?x_190 ?x_191
  1220. failed is_def_eq
  1221. [class_instances] (4) ?x_133 : comm_ring ℤ := @cau_seq.comm_ring ?x_192 ?x_193 ?x_194 ?x_195 ?x_196 ?x_197
  1222. failed is_def_eq
  1223. [class_instances] (4) ?x_133 : comm_ring ℤ := @mv_polynomial.comm_ring ?x_198 ?x_199 ?x_200
  1224. failed is_def_eq
  1225. [class_instances] (4) ?x_133 : comm_ring ℤ := @polynomial.comm_ring ?x_201 ?x_202
  1226. failed is_def_eq
  1227. [class_instances] (4) ?x_133 : comm_ring ℤ := @local_ring.comm_ring ?x_203 ?x_204
  1228. [class_instances] (5) ?x_204 : local_ring ℤ := @discrete_field.local_ring ?x_205 ?x_206
  1229. [class_instances] (6) ?x_206 : discrete_field ℤ := complex.discrete_field
  1230. failed is_def_eq
  1231. [class_instances] (6) ?x_206 : discrete_field ℤ := real.discrete_field
  1232. failed is_def_eq
  1233. [class_instances] (6) ?x_206 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_207 ?x_208
  1234. failed is_def_eq
  1235. [class_instances] (6) ?x_206 : discrete_field ℤ := rat.discrete_field
  1236. failed is_def_eq
  1237. [class_instances] (6) ?x_206 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_209 ?x_210
  1238. [class_instances] (7) ?x_210 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  1239. failed is_def_eq
  1240. [class_instances] (7) ?x_210 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  1241. failed is_def_eq
  1242. [class_instances] (4) ?x_133 : comm_ring ℤ := @ideal.quotient.comm_ring ?x_170 ?x_171 ?x_172
  1243. failed is_def_eq
  1244. [class_instances] (4) ?x_133 : comm_ring ℤ := @prod.comm_ring ?x_173 ?x_174 ?x_175 ?x_176
  1245. failed is_def_eq
  1246. [class_instances] (4) ?x_133 : comm_ring ℤ := @pi.comm_ring ?x_177 ?x_178 ?x_179
  1247. failed is_def_eq
  1248. [class_instances] (4) ?x_133 : comm_ring ℤ := @subtype.comm_ring ?x_180 ?x_181 ?x_182 ?x_183
  1249. failed is_def_eq
  1250. [class_instances] (4) ?x_133 : comm_ring ℤ := @subset.comm_ring ?x_184 ?x_185 ?x_186 ?x_187
  1251. failed is_def_eq
  1252. [class_instances] (4) ?x_133 : comm_ring ℤ := @finsupp.comm_ring ?x_188 ?x_189 ?x_190 ?x_191
  1253. failed is_def_eq
  1254. [class_instances] (4) ?x_133 : comm_ring ℤ := rat.comm_ring
  1255. failed is_def_eq
  1256. [class_instances] (4) ?x_133 : comm_ring ℤ := @nonzero_comm_ring.to_comm_ring ?x_192 ?x_193
  1257. [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := real.nonzero_comm_ring
  1258. failed is_def_eq
  1259. [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @polynomial.nonzero_comm_ring ?x_194 ?x_195
  1260. failed is_def_eq
  1261. [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @local_ring.to_nonzero_comm_ring ?x_196 ?x_197
  1262. [class_instances] (6) ?x_197 : local_ring ℤ := @discrete_field.local_ring ?x_198 ?x_199
  1263. [class_instances] (7) ?x_199 : discrete_field ℤ := complex.discrete_field
  1264. failed is_def_eq
  1265. [class_instances] (7) ?x_199 : discrete_field ℤ := real.discrete_field
  1266. failed is_def_eq
  1267. [class_instances] (7) ?x_199 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_200 ?x_201
  1268. failed is_def_eq
  1269. [class_instances] (7) ?x_199 : discrete_field ℤ := rat.discrete_field
  1270. failed is_def_eq
  1271. [class_instances] (7) ?x_199 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_202 ?x_203
  1272. [class_instances] (8) ?x_203 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  1273. failed is_def_eq
  1274. [class_instances] (8) ?x_203 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  1275. failed is_def_eq
  1276. [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @prod.nonzero_comm_ring ?x_194 ?x_195 ?x_196 ?x_197
  1277. failed is_def_eq
  1278. [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @euclidean_domain.to_nonzero_comm_ring ?x_198 ?x_199
  1279. [class_instances] (6) ?x_199 : euclidean_domain ℤ := @polynomial.euclidean_domain ?x_200 ?x_201
  1280. failed is_def_eq
  1281. [class_instances] (6) ?x_199 : euclidean_domain ℤ := @discrete_field.to_euclidean_domain ?x_202 ?x_203
  1282. [class_instances] (7) ?x_203 : discrete_field ℤ := complex.discrete_field
  1283. failed is_def_eq
  1284. [class_instances] (7) ?x_203 : discrete_field ℤ := real.discrete_field
  1285. failed is_def_eq
  1286. [class_instances] (7) ?x_203 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_204 ?x_205
  1287. failed is_def_eq
  1288. [class_instances] (7) ?x_203 : discrete_field ℤ := rat.discrete_field
  1289. failed is_def_eq
  1290. [class_instances] (7) ?x_203 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_206 ?x_207
  1291. [class_instances] (8) ?x_207 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  1292. failed is_def_eq
  1293. [class_instances] (8) ?x_207 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  1294. failed is_def_eq
  1295. [class_instances] (6) ?x_199 : euclidean_domain ℤ := int.euclidean_domain
  1296. [class_instances] (4) ?x_134 : ring A := @subalgebra.ring ?x_200 ?x_201 ?x_202 ?x_203 ?x_204 ?x_205
  1297. failed is_def_eq
  1298. [class_instances] (4) ?x_134 : ring A := @algebra.comap.ring ?x_206 ?x_207 ?x_208 ?x_209 ?x_210 ?x_211 ?x_212 ?x_213
  1299. failed is_def_eq
  1300. [class_instances] (4) ?x_134 : ring A := @free_abelian_group.ring ?x_214 ?x_215
  1301. failed is_def_eq
  1302. [class_instances] (4) ?x_134 : ring A := real.ring
  1303. failed is_def_eq
  1304. [class_instances] (4) ?x_134 : ring A := @cau_seq.ring ?x_216 ?x_217 ?x_218 ?x_219 ?x_220 ?x_221
  1305. failed is_def_eq
  1306. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring2 ?x_222 ?x_223 ?x_224
  1307. failed is_def_eq
  1308. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring ?x_225 ?x_226 ?x_227
  1309. failed is_def_eq
  1310. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.option_ring ?x_228 ?x_229 ?x_230
  1311. failed is_def_eq
  1312. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_iter ?x_231 ?x_232 ?x_233 ?x_234
  1313. failed is_def_eq
  1314. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_sum ?x_235 ?x_236 ?x_237 ?x_238
  1315. failed is_def_eq
  1316. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring ?x_239 ?x_240 ?x_241
  1317. failed is_def_eq
  1318. [class_instances] (4) ?x_134 : ring A := @linear_map.endomorphism_ring ?x_242 ?x_243 ?x_244 ?x_245 ?x_246
  1319. failed is_def_eq
  1320. [class_instances] (4) ?x_134 : ring A := @prod.ring ?x_247 ?x_248 ?x_249 ?x_250
  1321. failed is_def_eq
  1322. [class_instances] (4) ?x_134 : ring A := @pi.ring ?x_251 ?x_252 ?x_253
  1323. failed is_def_eq
  1324. [class_instances] (4) ?x_134 : ring A := @subtype.ring ?x_254 ?x_255 ?x_256 ?x_257
  1325. failed is_def_eq
  1326. [class_instances] (4) ?x_134 : ring A := @subset.ring ?x_258 ?x_259 ?x_260 ?x_261
  1327. failed is_def_eq
  1328. [class_instances] (4) ?x_134 : ring A := @finsupp.ring ?x_262 ?x_263 ?x_264 ?x_265
  1329. failed is_def_eq
  1330. [class_instances] (4) ?x_134 : ring A := @nonneg_ring.to_ring ?x_266 ?x_267
  1331. [class_instances] (5) ?x_267 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_268 ?x_269
  1332. [class_instances] (4) ?x_134 : ring A := @domain.to_ring ?x_200 ?x_201
  1333. [class_instances] (5) ?x_201 : domain A := real.domain
  1334. failed is_def_eq
  1335. [class_instances] (5) ?x_201 : domain A := @division_ring.to_domain ?x_202 ?x_203
  1336. [class_instances] (6) ?x_203 : division_ring A := real.division_ring
  1337. failed is_def_eq
  1338. [class_instances] (6) ?x_203 : division_ring A := rat.division_ring
  1339. failed is_def_eq
  1340. [class_instances] (6) ?x_203 : division_ring A := @field.to_division_ring ?x_204 ?x_205
  1341. [class_instances] (7) ?x_205 : field A := real.field
  1342. failed is_def_eq
  1343. [class_instances] (7) ?x_205 : field A := rat.field
  1344. failed is_def_eq
  1345. [class_instances] (7) ?x_205 : field A := @linear_ordered_field.to_field ?x_206 ?x_207
  1346. [class_instances] (8) ?x_207 : linear_ordered_field A := real.linear_ordered_field
  1347. failed is_def_eq
  1348. [class_instances] (8) ?x_207 : linear_ordered_field A := rat.linear_ordered_field
  1349. failed is_def_eq
  1350. [class_instances] (8) ?x_207 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_208 ?x_209
  1351. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1352. failed is_def_eq
  1353. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1354. failed is_def_eq
  1355. [class_instances] (7) ?x_205 : field A := @discrete_field.to_field ?x_206 ?x_207
  1356. [class_instances] (8) ?x_207 : discrete_field A := complex.discrete_field
  1357. failed is_def_eq
  1358. [class_instances] (8) ?x_207 : discrete_field A := real.discrete_field
  1359. failed is_def_eq
  1360. [class_instances] (8) ?x_207 : discrete_field A := @local_ring.residue_field.discrete_field ?x_208 ?x_209
  1361. failed is_def_eq
  1362. [class_instances] (8) ?x_207 : discrete_field A := rat.discrete_field
  1363. failed is_def_eq
  1364. [class_instances] (8) ?x_207 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_210 ?x_211
  1365. [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1366. failed is_def_eq
  1367. [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1368. failed is_def_eq
  1369. [class_instances] (5) ?x_201 : domain A := @linear_nonneg_ring.to_domain ?x_202 ?x_203
  1370. [class_instances] (5) ?x_201 : domain A := @to_domain ?x_202 ?x_203
  1371. [class_instances] (6) ?x_203 : linear_ordered_ring A := real.linear_ordered_ring
  1372. failed is_def_eq
  1373. [class_instances] (6) ?x_203 : linear_ordered_ring A := rat.linear_ordered_ring
  1374. failed is_def_eq
  1375. [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_204 ?x_205
  1376. [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_204 ?x_205
  1377. [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
  1378. failed is_def_eq
  1379. [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
  1380. failed is_def_eq
  1381. [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
  1382. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1383. failed is_def_eq
  1384. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1385. failed is_def_eq
  1386. [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_204 ?x_205
  1387. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  1388. failed is_def_eq
  1389. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  1390. failed is_def_eq
  1391. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
  1392. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  1393. failed is_def_eq
  1394. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  1395. failed is_def_eq
  1396. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
  1397. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  1398. failed is_def_eq
  1399. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
  1400. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1401. failed is_def_eq
  1402. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1403. failed is_def_eq
  1404. [class_instances] (5) ?x_201 : domain A := @integral_domain.to_domain ?x_202 ?x_203
  1405. [class_instances] (6) ?x_203 : integral_domain A := real.integral_domain
  1406. failed is_def_eq
  1407. [class_instances] (6) ?x_203 : integral_domain A := @polynomial.integral_domain ?x_204 ?x_205
  1408. failed is_def_eq
  1409. [class_instances] (6) ?x_203 : integral_domain A := @ideal.quotient.integral_domain ?x_206 ?x_207 ?x_208 ?x_209
  1410. failed is_def_eq
  1411. [class_instances] (6) ?x_203 : integral_domain A := @subring.domain ?x_210 ?x_211 ?x_212 ?x_213
  1412. failed is_def_eq
  1413. [class_instances] (6) ?x_203 : integral_domain A := @euclidean_domain.integral_domain ?x_214 ?x_215
  1414. [class_instances] (7) ?x_215 : euclidean_domain A := @polynomial.euclidean_domain ?x_216 ?x_217
  1415. failed is_def_eq
  1416. [class_instances] (7) ?x_215 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_218 ?x_219
  1417. [class_instances] (8) ?x_219 : discrete_field A := complex.discrete_field
  1418. failed is_def_eq
  1419. [class_instances] (8) ?x_219 : discrete_field A := real.discrete_field
  1420. failed is_def_eq
  1421. [class_instances] (8) ?x_219 : discrete_field A := @local_ring.residue_field.discrete_field ?x_220 ?x_221
  1422. failed is_def_eq
  1423. [class_instances] (8) ?x_219 : discrete_field A := rat.discrete_field
  1424. failed is_def_eq
  1425. [class_instances] (8) ?x_219 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_222 ?x_223
  1426. [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1427. failed is_def_eq
  1428. [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1429. failed is_def_eq
  1430. [class_instances] (7) ?x_215 : euclidean_domain A := int.euclidean_domain
  1431. failed is_def_eq
  1432. [class_instances] (6) ?x_203 : integral_domain A := @normalization_domain.to_integral_domain ?x_204 ?x_205
  1433. [class_instances] (7) ?x_205 : normalization_domain A := @polynomial.normalization_domain ?x_206 ?x_207
  1434. failed is_def_eq
  1435. [class_instances] (7) ?x_205 : normalization_domain A := int.normalization_domain
  1436. failed is_def_eq
  1437. [class_instances] (7) ?x_205 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_208 ?x_209
  1438. [class_instances] (8) ?x_209 : gcd_domain A := int.gcd_domain
  1439. failed is_def_eq
  1440. [class_instances] (6) ?x_203 : integral_domain A := rat.integral_domain
  1441. failed is_def_eq
  1442. [class_instances] (6) ?x_203 : integral_domain A := @field.to_integral_domain ?x_204 ?x_205
  1443. [class_instances] (7) ?x_205 : field A := real.field
  1444. failed is_def_eq
  1445. [class_instances] (7) ?x_205 : field A := rat.field
  1446. failed is_def_eq
  1447. [class_instances] (7) ?x_205 : field A := @linear_ordered_field.to_field ?x_206 ?x_207
  1448. [class_instances] (8) ?x_207 : linear_ordered_field A := real.linear_ordered_field
  1449. failed is_def_eq
  1450. [class_instances] (8) ?x_207 : linear_ordered_field A := rat.linear_ordered_field
  1451. failed is_def_eq
  1452. [class_instances] (8) ?x_207 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_208 ?x_209
  1453. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1454. failed is_def_eq
  1455. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1456. failed is_def_eq
  1457. [class_instances] (7) ?x_205 : field A := @discrete_field.to_field ?x_206 ?x_207
  1458. [class_instances] (8) ?x_207 : discrete_field A := complex.discrete_field
  1459. failed is_def_eq
  1460. [class_instances] (8) ?x_207 : discrete_field A := real.discrete_field
  1461. failed is_def_eq
  1462. [class_instances] (8) ?x_207 : discrete_field A := @local_ring.residue_field.discrete_field ?x_208 ?x_209
  1463. failed is_def_eq
  1464. [class_instances] (8) ?x_207 : discrete_field A := rat.discrete_field
  1465. failed is_def_eq
  1466. [class_instances] (8) ?x_207 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_210 ?x_211
  1467. [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1468. failed is_def_eq
  1469. [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1470. failed is_def_eq
  1471. [class_instances] (6) ?x_203 : integral_domain A := @discrete_field.to_integral_domain ?x_204 ?x_205 ?x_206
  1472. [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
  1473. failed is_def_eq
  1474. [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
  1475. failed is_def_eq
  1476. [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_207 ?x_208
  1477. failed is_def_eq
  1478. [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
  1479. failed is_def_eq
  1480. [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_209 ?x_210
  1481. [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1482. failed is_def_eq
  1483. [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1484. failed is_def_eq
  1485. [class_instances] (6) ?x_203 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_204 ?x_205
  1486. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  1487. failed is_def_eq
  1488. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  1489. failed is_def_eq
  1490. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
  1491. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  1492. failed is_def_eq
  1493. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  1494. failed is_def_eq
  1495. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
  1496. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  1497. failed is_def_eq
  1498. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
  1499. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1500. failed is_def_eq
  1501. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1502. failed is_def_eq
  1503. [class_instances] (4) ?x_134 : ring A := int.ring
  1504. failed is_def_eq
  1505. [class_instances] (4) ?x_134 : ring A := @division_ring.to_ring ?x_200 ?x_201
  1506. [class_instances] (5) ?x_201 : division_ring A := real.division_ring
  1507. failed is_def_eq
  1508. [class_instances] (5) ?x_201 : division_ring A := rat.division_ring
  1509. failed is_def_eq
  1510. [class_instances] (5) ?x_201 : division_ring A := @field.to_division_ring ?x_202 ?x_203
  1511. [class_instances] (6) ?x_203 : field A := real.field
  1512. failed is_def_eq
  1513. [class_instances] (6) ?x_203 : field A := rat.field
  1514. failed is_def_eq
  1515. [class_instances] (6) ?x_203 : field A := @linear_ordered_field.to_field ?x_204 ?x_205
  1516. [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
  1517. failed is_def_eq
  1518. [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
  1519. failed is_def_eq
  1520. [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
  1521. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1522. failed is_def_eq
  1523. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1524. failed is_def_eq
  1525. [class_instances] (6) ?x_203 : field A := @discrete_field.to_field ?x_204 ?x_205
  1526. [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
  1527. failed is_def_eq
  1528. [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
  1529. failed is_def_eq
  1530. [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_206 ?x_207
  1531. failed is_def_eq
  1532. [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
  1533. failed is_def_eq
  1534. [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_208 ?x_209
  1535. [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1536. failed is_def_eq
  1537. [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1538. failed is_def_eq
  1539. [class_instances] (4) ?x_134 : ring A := @ordered_ring.to_ring ?x_200 ?x_201
  1540. [class_instances] (5) ?x_201 : ordered_ring A := real.ordered_ring
  1541. failed is_def_eq
  1542. [class_instances] (5) ?x_201 : ordered_ring A := rat.ordered_ring
  1543. failed is_def_eq
  1544. [class_instances] (5) ?x_201 : ordered_ring A := @nonneg_ring.to_ordered_ring ?x_202 ?x_203
  1545. [class_instances] (6) ?x_203 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_204 ?x_205
  1546. [class_instances] (5) ?x_201 : ordered_ring A := @linear_ordered_ring.to_ordered_ring ?x_202 ?x_203
  1547. [class_instances] (6) ?x_203 : linear_ordered_ring A := real.linear_ordered_ring
  1548. failed is_def_eq
  1549. [class_instances] (6) ?x_203 : linear_ordered_ring A := rat.linear_ordered_ring
  1550. failed is_def_eq
  1551. [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_204 ?x_205
  1552. [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_204 ?x_205
  1553. [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
  1554. failed is_def_eq
  1555. [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
  1556. failed is_def_eq
  1557. [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
  1558. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1559. failed is_def_eq
  1560. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1561. failed is_def_eq
  1562. [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_204 ?x_205
  1563. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  1564. failed is_def_eq
  1565. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  1566. failed is_def_eq
  1567. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
  1568. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  1569. failed is_def_eq
  1570. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  1571. failed is_def_eq
  1572. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
  1573. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  1574. failed is_def_eq
  1575. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
  1576. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  1577. failed is_def_eq
  1578. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  1579. failed is_def_eq
  1580. [class_instances] (4) ?x_134 : ring A := @comm_ring.to_ring ?x_200 ?x_201
  1581. [class_instances] (5) ?x_201 : comm_ring A := _inst_1
  1582. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  1583. (@comm_ring.to_ring A _inst_1) := @algebra_int ?x_202 ?x_203
  1584. [class_instances] class-instance resolution trace
  1585. [class_instances] (0) ?x_204 : comm_ring A := _inst_1
  1586. [class_instances] (5) ?x_203 : comm_ring A := _inst_1
  1587. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @alg_hom.has_coe_to_fun ?x_205 ?x_206 ?x_207 ?x_208 ?x_209 ?x_210 ?x_211 ?x_212
  1588. failed is_def_eq
  1589. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @direct_sum.has_coe_to_fun ?x_213 ?x_214 ?x_215 ?x_216
  1590. failed is_def_eq
  1591. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @dfinsupp.has_coe_to_fun ?x_217 ?x_218 ?x_219
  1592. failed is_def_eq
  1593. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @cau_seq.has_coe_to_fun ?x_220 ?x_221 ?x_222 ?x_223 ?x_224
  1594. failed is_def_eq
  1595. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @order_embedding.has_coe_to_fun ?x_225 ?x_226 ?x_227 ?x_228
  1596. failed is_def_eq
  1597. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @add_equiv.has_coe_to_fun ?x_229 ?x_230 ?x_231 ?x_232
  1598. failed is_def_eq
  1599. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @mul_equiv.has_coe_to_fun ?x_233 ?x_234 ?x_235 ?x_236
  1600. failed is_def_eq
  1601. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @finsupp.has_coe_to_fun ?x_237 ?x_238 ?x_239
  1602. failed is_def_eq
  1603. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @linear_map.has_coe_to_fun ?x_240 ?x_241 ?x_242 ?x_243 ?x_244 ?x_245 ?x_246 ?x_247
  1604. failed is_def_eq
  1605. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @ring_hom.has_coe_to_fun ?x_248 ?x_249 ?x_250 ?x_251
  1606. failed is_def_eq
  1607. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @add_monoid_hom.has_coe_to_fun ?x_252 ?x_253 ?x_254 ?x_255
  1608. failed is_def_eq
  1609. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @monoid_hom.has_coe_to_fun ?x_256 ?x_257 ?x_258 ?x_259
  1610. failed is_def_eq
  1611. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @function.has_coe_to_fun ?x_260 ?x_261
  1612. failed is_def_eq
  1613. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @equiv.has_coe_to_fun ?x_262 ?x_263
  1614. failed is_def_eq
  1615. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @applicative_transformation.has_coe_to_fun ?x_264 ?x_265 ?x_266 ?x_267 ?x_268 ?x_269
  1616. failed is_def_eq
  1617. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @expr.has_coe_to_fun ?x_270
  1618. failed is_def_eq
  1619. [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @coe_fn_trans ?x_271 ?x_272 ?x_273 ?x_274
  1620. [class_instances] (2) ?x_273 : has_coe_t_aux (set A) ?x_272 := @coe_base_aux ?x_275 ?x_276 ?x_277
  1621. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @lean.parser.has_coe' ?x_278
  1622. failed is_def_eq
  1623. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @subalgebra.coe_to_submodule ?x_279 ?x_280 ?x_281 ?x_282 ?x_283
  1624. failed is_def_eq
  1625. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @subalgebra.has_coe ?x_284 ?x_285 ?x_286 ?x_287 ?x_288
  1626. failed is_def_eq
  1627. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := complex.has_coe
  1628. failed is_def_eq
  1629. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := tactic.abel.has_coe
  1630. failed is_def_eq
  1631. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := int.snum_coe
  1632. failed is_def_eq
  1633. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := snum.has_coe
  1634. failed is_def_eq
  1635. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := tactic.ring.has_coe
  1636. failed is_def_eq
  1637. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @linear_equiv.has_coe ?x_289 ?x_290 ?x_291 ?x_292 ?x_293 ?x_294 ?x_295 ?x_296
  1638. failed is_def_eq
  1639. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @order_iso.has_coe ?x_297 ?x_298 ?x_299 ?x_300
  1640. failed is_def_eq
  1641. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @submodule.has_coe ?x_301 ?x_302 ?x_303 ?x_304 ?x_305
  1642. failed is_def_eq
  1643. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @quotient_add_group.has_coe ?x_306 ?x_307 ?x_308 ?x_309
  1644. [class_instances] (4) ?x_307 : add_group (set A) := @dfinsupp.add_group ?x_310 ?x_311 ?x_312
  1645. failed is_def_eq
  1646. [class_instances] (4) ?x_307 : add_group (set A) := @quotient_add_group.add_group ?x_313 ?x_314 ?x_315 ?x_316
  1647. failed is_def_eq
  1648. [class_instances] (4) ?x_307 : add_group (set A) := real.add_group
  1649. failed is_def_eq
  1650. [class_instances] (4) ?x_307 : add_group (set A) := @prod.add_group ?x_317 ?x_318 ?x_319 ?x_320
  1651. failed is_def_eq
  1652. [class_instances] (4) ?x_307 : add_group (set A) := @pi.add_group ?x_321 ?x_322 ?x_323
  1653. failed is_def_eq
  1654. [class_instances] (4) ?x_307 : add_group (set A) := @finsupp.add_group ?x_324 ?x_325 ?x_326
  1655. failed is_def_eq
  1656. [class_instances] (4) ?x_307 : add_group (set A) := @subtype.add_group ?x_327 ?x_328 ?x_329 ?x_330
  1657. failed is_def_eq
  1658. [class_instances] (4) ?x_307 : add_group (set A) := rat.add_group
  1659. failed is_def_eq
  1660. [class_instances] (4) ?x_307 : add_group (set A) := @additive.add_group ?x_331 ?x_332
  1661. failed is_def_eq
  1662. [class_instances] (4) ?x_307 : add_group (set A) := @add_comm_group.to_add_group ?x_333 ?x_334
  1663. [class_instances] (5) ?x_334 : add_comm_group (set A) := @tensor_product.add_comm_group ?x_335 ?x_336 ?x_337 ?x_338 ?x_339 ?x_340 ?x_341 ?x_342
  1664. failed is_def_eq
  1665. [class_instances] (5) ?x_334 : add_comm_group (set A) := @direct_sum.add_comm_group ?x_343 ?x_344 ?x_345 ?x_346
  1666. failed is_def_eq
  1667. [class_instances] (5) ?x_334 : add_comm_group (set A) := @dfinsupp.add_comm_group ?x_347 ?x_348 ?x_349
  1668. failed is_def_eq
  1669. [class_instances] (5) ?x_334 : add_comm_group (set A) := free_abelian_group.add_comm_group ?x_350
  1670. failed is_def_eq
  1671. [class_instances] (5) ?x_334 : add_comm_group (set A) := @quotient_add_group.add_comm_group ?x_351 ?x_352 ?x_353 ?x_354
  1672. failed is_def_eq
  1673. [class_instances] (5) ?x_334 : add_comm_group (set A) := real.add_comm_group
  1674. failed is_def_eq
  1675. [class_instances] (5) ?x_334 : add_comm_group (set A) := @submodule.quotient.add_comm_group ?x_355 ?x_356 ?x_357 ?x_358 ?x_359 ?x_360
  1676. failed is_def_eq
  1677. [class_instances] (5) ?x_334 : add_comm_group (set A) := @linear_map.add_comm_group ?x_361 ?x_362 ?x_363 ?x_364 ?x_365 ?x_366 ?x_367 ?x_368
  1678. failed is_def_eq
  1679. [class_instances] (5) ?x_334 : add_comm_group (set A) := @prod.add_comm_group ?x_369 ?x_370 ?x_371 ?x_372
  1680. failed is_def_eq
  1681. [class_instances] (5) ?x_334 : add_comm_group (set A) := @pi.add_comm_group ?x_373 ?x_374 ?x_375
  1682. failed is_def_eq
  1683. [class_instances] (5) ?x_334 : add_comm_group (set A) := @finsupp.add_comm_group ?x_376 ?x_377 ?x_378
  1684. failed is_def_eq
  1685. [class_instances] (5) ?x_334 : add_comm_group (set A) := @submodule.add_comm_group ?x_379 ?x_380 ?x_381 ?x_382 ?x_383 ?x_384
  1686. failed is_def_eq
  1687. [class_instances] (5) ?x_334 : add_comm_group (set A) := @subtype.add_comm_group ?x_385 ?x_386 ?x_387 ?x_388
  1688. failed is_def_eq
  1689. [class_instances] (5) ?x_334 : add_comm_group (set A) := rat.add_comm_group
  1690. failed is_def_eq
  1691. [class_instances] (5) ?x_334 : add_comm_group (set A) := @nonneg_comm_group.to_add_comm_group ?x_389 ?x_390
  1692. [class_instances] (6) ?x_390 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_391 ?x_392
  1693. [class_instances] (6) ?x_390 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_391 ?x_392
  1694. [class_instances] (7) ?x_392 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_393 ?x_394
  1695. [class_instances] (5) ?x_334 : add_comm_group (set A) := @additive.add_comm_group ?x_335 ?x_336
  1696. failed is_def_eq
  1697. [class_instances] (5) ?x_334 : add_comm_group (set A) := @add_monoid_hom.add_comm_group ?x_337 ?x_338 ?x_339 ?x_340
  1698. failed is_def_eq
  1699. [class_instances] (5) ?x_334 : add_comm_group (set A) := @ring.to_add_comm_group ?x_341 ?x_342
  1700. [class_instances] (6) ?x_342 : ring (set A) := @subalgebra.ring ?x_343 ?x_344 ?x_345 ?x_346 ?x_347 ?x_348
  1701. failed is_def_eq
  1702. [class_instances] (6) ?x_342 : ring (set A) := @algebra.comap.ring ?x_349 ?x_350 ?x_351 ?x_352 ?x_353 ?x_354 ?x_355 ?x_356
  1703. failed is_def_eq
  1704. [class_instances] (6) ?x_342 : ring (set A) := @free_abelian_group.ring ?x_357 ?x_358
  1705. failed is_def_eq
  1706. [class_instances] (6) ?x_342 : ring (set A) := real.ring
  1707. failed is_def_eq
  1708. [class_instances] (6) ?x_342 : ring (set A) := @cau_seq.ring ?x_359 ?x_360 ?x_361 ?x_362 ?x_363 ?x_364
  1709. failed is_def_eq
  1710. [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.polynomial_ring2 ?x_365 ?x_366 ?x_367
  1711. failed is_def_eq
  1712. [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.polynomial_ring ?x_368 ?x_369 ?x_370
  1713. failed is_def_eq
  1714. [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.option_ring ?x_371 ?x_372 ?x_373
  1715. failed is_def_eq
  1716. [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.ring_on_iter ?x_374 ?x_375 ?x_376 ?x_377
  1717. failed is_def_eq
  1718. [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.ring_on_sum ?x_378 ?x_379 ?x_380 ?x_381
  1719. failed is_def_eq
  1720. [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.ring ?x_382 ?x_383 ?x_384
  1721. failed is_def_eq
  1722. [class_instances] (6) ?x_342 : ring (set A) := @linear_map.endomorphism_ring ?x_385 ?x_386 ?x_387 ?x_388 ?x_389
  1723. failed is_def_eq
  1724. [class_instances] (6) ?x_342 : ring (set A) := @prod.ring ?x_390 ?x_391 ?x_392 ?x_393
  1725. failed is_def_eq
  1726. [class_instances] (6) ?x_342 : ring (set A) := @pi.ring ?x_394 ?x_395 ?x_396
  1727. failed is_def_eq
  1728. [class_instances] (6) ?x_342 : ring (set A) := @subtype.ring ?x_397 ?x_398 ?x_399 ?x_400
  1729. failed is_def_eq
  1730. [class_instances] (6) ?x_342 : ring (set A) := @subset.ring ?x_401 ?x_402 ?x_403 ?x_404
  1731. failed is_def_eq
  1732. [class_instances] (6) ?x_342 : ring (set A) := @finsupp.ring ?x_405 ?x_406 ?x_407 ?x_408
  1733. failed is_def_eq
  1734. [class_instances] (6) ?x_342 : ring (set A) := @nonneg_ring.to_ring ?x_409 ?x_410
  1735. [class_instances] (7) ?x_410 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_411 ?x_412
  1736. [class_instances] (6) ?x_342 : ring (set A) := @domain.to_ring ?x_343 ?x_344
  1737. [class_instances] (7) ?x_344 : domain (set A) := real.domain
  1738. failed is_def_eq
  1739. [class_instances] (7) ?x_344 : domain (set A) := @division_ring.to_domain ?x_345 ?x_346
  1740. [class_instances] (8) ?x_346 : division_ring (set A) := real.division_ring
  1741. failed is_def_eq
  1742. [class_instances] (8) ?x_346 : division_ring (set A) := rat.division_ring
  1743. failed is_def_eq
  1744. [class_instances] (8) ?x_346 : division_ring (set A) := @field.to_division_ring ?x_347 ?x_348
  1745. [class_instances] (9) ?x_348 : field (set A) := real.field
  1746. failed is_def_eq
  1747. [class_instances] (9) ?x_348 : field (set A) := rat.field
  1748. failed is_def_eq
  1749. [class_instances] (9) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
  1750. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
  1751. failed is_def_eq
  1752. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
  1753. failed is_def_eq
  1754. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
  1755. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1756. failed is_def_eq
  1757. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1758. failed is_def_eq
  1759. [class_instances] (9) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
  1760. [class_instances] (10) ?x_350 : discrete_field (set A) := complex.discrete_field
  1761. failed is_def_eq
  1762. [class_instances] (10) ?x_350 : discrete_field (set A) := real.discrete_field
  1763. failed is_def_eq
  1764. [class_instances] (10) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
  1765. failed is_def_eq
  1766. [class_instances] (10) ?x_350 : discrete_field (set A) := rat.discrete_field
  1767. failed is_def_eq
  1768. [class_instances] (10) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
  1769. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1770. failed is_def_eq
  1771. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1772. failed is_def_eq
  1773. [class_instances] (7) ?x_344 : domain (set A) := @linear_nonneg_ring.to_domain ?x_345 ?x_346
  1774. [class_instances] (7) ?x_344 : domain (set A) := @to_domain ?x_345 ?x_346
  1775. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := real.linear_ordered_ring
  1776. failed is_def_eq
  1777. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := rat.linear_ordered_ring
  1778. failed is_def_eq
  1779. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_347 ?x_348
  1780. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_347 ?x_348
  1781. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
  1782. failed is_def_eq
  1783. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
  1784. failed is_def_eq
  1785. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
  1786. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1787. failed is_def_eq
  1788. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1789. failed is_def_eq
  1790. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_347 ?x_348
  1791. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  1792. failed is_def_eq
  1793. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  1794. failed is_def_eq
  1795. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
  1796. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  1797. failed is_def_eq
  1798. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  1799. failed is_def_eq
  1800. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
  1801. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  1802. failed is_def_eq
  1803. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
  1804. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1805. failed is_def_eq
  1806. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1807. failed is_def_eq
  1808. [class_instances] (7) ?x_344 : domain (set A) := @integral_domain.to_domain ?x_345 ?x_346
  1809. [class_instances] (8) ?x_346 : integral_domain (set A) := real.integral_domain
  1810. failed is_def_eq
  1811. [class_instances] (8) ?x_346 : integral_domain (set A) := @polynomial.integral_domain ?x_347 ?x_348
  1812. failed is_def_eq
  1813. [class_instances] (8) ?x_346 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_349 ?x_350 ?x_351 ?x_352
  1814. failed is_def_eq
  1815. [class_instances] (8) ?x_346 : integral_domain (set A) := @subring.domain ?x_353 ?x_354 ?x_355 ?x_356
  1816. failed is_def_eq
  1817. [class_instances] (8) ?x_346 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_357 ?x_358
  1818. [class_instances] (9) ?x_358 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_359 ?x_360
  1819. failed is_def_eq
  1820. [class_instances] (9) ?x_358 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_361 ?x_362
  1821. [class_instances] (10) ?x_362 : discrete_field (set A) := complex.discrete_field
  1822. failed is_def_eq
  1823. [class_instances] (10) ?x_362 : discrete_field (set A) := real.discrete_field
  1824. failed is_def_eq
  1825. [class_instances] (10) ?x_362 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_363 ?x_364
  1826. failed is_def_eq
  1827. [class_instances] (10) ?x_362 : discrete_field (set A) := rat.discrete_field
  1828. failed is_def_eq
  1829. [class_instances] (10) ?x_362 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_365 ?x_366
  1830. [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1831. failed is_def_eq
  1832. [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1833. failed is_def_eq
  1834. [class_instances] (9) ?x_358 : euclidean_domain (set A) := int.euclidean_domain
  1835. failed is_def_eq
  1836. [class_instances] (8) ?x_346 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_347 ?x_348
  1837. [class_instances] (9) ?x_348 : normalization_domain (set A) := @polynomial.normalization_domain ?x_349 ?x_350
  1838. failed is_def_eq
  1839. [class_instances] (9) ?x_348 : normalization_domain (set A) := int.normalization_domain
  1840. failed is_def_eq
  1841. [class_instances] (9) ?x_348 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_351 ?x_352
  1842. [class_instances] (10) ?x_352 : gcd_domain (set A) := int.gcd_domain
  1843. failed is_def_eq
  1844. [class_instances] (8) ?x_346 : integral_domain (set A) := rat.integral_domain
  1845. failed is_def_eq
  1846. [class_instances] (8) ?x_346 : integral_domain (set A) := @field.to_integral_domain ?x_347 ?x_348
  1847. [class_instances] (9) ?x_348 : field (set A) := real.field
  1848. failed is_def_eq
  1849. [class_instances] (9) ?x_348 : field (set A) := rat.field
  1850. failed is_def_eq
  1851. [class_instances] (9) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
  1852. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
  1853. failed is_def_eq
  1854. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
  1855. failed is_def_eq
  1856. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
  1857. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1858. failed is_def_eq
  1859. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1860. failed is_def_eq
  1861. [class_instances] (9) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
  1862. [class_instances] (10) ?x_350 : discrete_field (set A) := complex.discrete_field
  1863. failed is_def_eq
  1864. [class_instances] (10) ?x_350 : discrete_field (set A) := real.discrete_field
  1865. failed is_def_eq
  1866. [class_instances] (10) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
  1867. failed is_def_eq
  1868. [class_instances] (10) ?x_350 : discrete_field (set A) := rat.discrete_field
  1869. failed is_def_eq
  1870. [class_instances] (10) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
  1871. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1872. failed is_def_eq
  1873. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1874. failed is_def_eq
  1875. [class_instances] (8) ?x_346 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_347 ?x_348 ?x_349
  1876. [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
  1877. failed is_def_eq
  1878. [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
  1879. failed is_def_eq
  1880. [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_350 ?x_351
  1881. failed is_def_eq
  1882. [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
  1883. failed is_def_eq
  1884. [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_352 ?x_353
  1885. [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1886. failed is_def_eq
  1887. [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1888. failed is_def_eq
  1889. [class_instances] (8) ?x_346 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_347 ?x_348
  1890. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  1891. failed is_def_eq
  1892. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  1893. failed is_def_eq
  1894. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
  1895. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  1896. failed is_def_eq
  1897. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  1898. failed is_def_eq
  1899. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
  1900. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  1901. failed is_def_eq
  1902. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
  1903. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1904. failed is_def_eq
  1905. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1906. failed is_def_eq
  1907. [class_instances] (6) ?x_342 : ring (set A) := int.ring
  1908. failed is_def_eq
  1909. [class_instances] (6) ?x_342 : ring (set A) := @division_ring.to_ring ?x_343 ?x_344
  1910. [class_instances] (7) ?x_344 : division_ring (set A) := real.division_ring
  1911. failed is_def_eq
  1912. [class_instances] (7) ?x_344 : division_ring (set A) := rat.division_ring
  1913. failed is_def_eq
  1914. [class_instances] (7) ?x_344 : division_ring (set A) := @field.to_division_ring ?x_345 ?x_346
  1915. [class_instances] (8) ?x_346 : field (set A) := real.field
  1916. failed is_def_eq
  1917. [class_instances] (8) ?x_346 : field (set A) := rat.field
  1918. failed is_def_eq
  1919. [class_instances] (8) ?x_346 : field (set A) := @linear_ordered_field.to_field ?x_347 ?x_348
  1920. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
  1921. failed is_def_eq
  1922. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
  1923. failed is_def_eq
  1924. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
  1925. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1926. failed is_def_eq
  1927. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1928. failed is_def_eq
  1929. [class_instances] (8) ?x_346 : field (set A) := @discrete_field.to_field ?x_347 ?x_348
  1930. [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
  1931. failed is_def_eq
  1932. [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
  1933. failed is_def_eq
  1934. [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_349 ?x_350
  1935. failed is_def_eq
  1936. [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
  1937. failed is_def_eq
  1938. [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_351 ?x_352
  1939. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1940. failed is_def_eq
  1941. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1942. failed is_def_eq
  1943. [class_instances] (6) ?x_342 : ring (set A) := @ordered_ring.to_ring ?x_343 ?x_344
  1944. [class_instances] (7) ?x_344 : ordered_ring (set A) := real.ordered_ring
  1945. failed is_def_eq
  1946. [class_instances] (7) ?x_344 : ordered_ring (set A) := rat.ordered_ring
  1947. failed is_def_eq
  1948. [class_instances] (7) ?x_344 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_345 ?x_346
  1949. [class_instances] (8) ?x_346 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_347 ?x_348
  1950. [class_instances] (7) ?x_344 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_345 ?x_346
  1951. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := real.linear_ordered_ring
  1952. failed is_def_eq
  1953. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := rat.linear_ordered_ring
  1954. failed is_def_eq
  1955. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_347 ?x_348
  1956. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_347 ?x_348
  1957. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
  1958. failed is_def_eq
  1959. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
  1960. failed is_def_eq
  1961. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
  1962. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1963. failed is_def_eq
  1964. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1965. failed is_def_eq
  1966. [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_347 ?x_348
  1967. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  1968. failed is_def_eq
  1969. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  1970. failed is_def_eq
  1971. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
  1972. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  1973. failed is_def_eq
  1974. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  1975. failed is_def_eq
  1976. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
  1977. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  1978. failed is_def_eq
  1979. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
  1980. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  1981. failed is_def_eq
  1982. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  1983. failed is_def_eq
  1984. [class_instances] (6) ?x_342 : ring (set A) := @comm_ring.to_ring ?x_343 ?x_344
  1985. [class_instances] (7) ?x_344 : comm_ring (set A) := _inst_1
  1986. failed is_def_eq
  1987. [class_instances] (7) ?x_344 : comm_ring (set A) := @subalgebra.comm_ring ?x_345 ?x_346 ?x_347 ?x_348 ?x_349 ?x_350
  1988. failed is_def_eq
  1989. [class_instances] (7) ?x_344 : comm_ring (set A) := @algebra.comap.comm_ring ?x_351 ?x_352 ?x_353 ?x_354 ?x_355 ?x_356 ?x_357 ?x_358
  1990. failed is_def_eq
  1991. [class_instances] (7) ?x_344 : comm_ring (set A) := @free_abelian_group.comm_ring ?x_359 ?x_360
  1992. failed is_def_eq
  1993. [class_instances] (7) ?x_344 : comm_ring (set A) := complex.comm_ring
  1994. failed is_def_eq
  1995. [class_instances] (7) ?x_344 : comm_ring (set A) := real.comm_ring
  1996. failed is_def_eq
  1997. [class_instances] (7) ?x_344 : comm_ring (set A) := @cau_seq.completion.comm_ring ?x_361 ?x_362 ?x_363 ?x_364 ?x_365 ?x_366
  1998. failed is_def_eq
  1999. [class_instances] (7) ?x_344 : comm_ring (set A) := @cau_seq.comm_ring ?x_367 ?x_368 ?x_369 ?x_370 ?x_371 ?x_372
  2000. failed is_def_eq
  2001. [class_instances] (7) ?x_344 : comm_ring (set A) := @mv_polynomial.comm_ring ?x_373 ?x_374 ?x_375
  2002. failed is_def_eq
  2003. [class_instances] (7) ?x_344 : comm_ring (set A) := @polynomial.comm_ring ?x_376 ?x_377
  2004. failed is_def_eq
  2005. [class_instances] (7) ?x_344 : comm_ring (set A) := @local_ring.comm_ring ?x_378 ?x_379
  2006. [class_instances] (8) ?x_379 : local_ring (set A) := @discrete_field.local_ring ?x_380 ?x_381
  2007. [class_instances] (9) ?x_381 : discrete_field (set A) := complex.discrete_field
  2008. failed is_def_eq
  2009. [class_instances] (9) ?x_381 : discrete_field (set A) := real.discrete_field
  2010. failed is_def_eq
  2011. [class_instances] (9) ?x_381 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_382 ?x_383
  2012. failed is_def_eq
  2013. [class_instances] (9) ?x_381 : discrete_field (set A) := rat.discrete_field
  2014. failed is_def_eq
  2015. [class_instances] (9) ?x_381 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_384 ?x_385
  2016. [class_instances] (10) ?x_385 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2017. failed is_def_eq
  2018. [class_instances] (10) ?x_385 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2019. failed is_def_eq
  2020. [class_instances] (7) ?x_344 : comm_ring (set A) := @ideal.quotient.comm_ring ?x_345 ?x_346 ?x_347
  2021. failed is_def_eq
  2022. [class_instances] (7) ?x_344 : comm_ring (set A) := @prod.comm_ring ?x_348 ?x_349 ?x_350 ?x_351
  2023. failed is_def_eq
  2024. [class_instances] (7) ?x_344 : comm_ring (set A) := @pi.comm_ring ?x_352 ?x_353 ?x_354
  2025. failed is_def_eq
  2026. [class_instances] (7) ?x_344 : comm_ring (set A) := @subtype.comm_ring ?x_355 ?x_356 ?x_357 ?x_358
  2027. failed is_def_eq
  2028. [class_instances] (7) ?x_344 : comm_ring (set A) := @subset.comm_ring ?x_359 ?x_360 ?x_361 ?x_362
  2029. failed is_def_eq
  2030. [class_instances] (7) ?x_344 : comm_ring (set A) := @finsupp.comm_ring ?x_363 ?x_364 ?x_365 ?x_366
  2031. failed is_def_eq
  2032. [class_instances] (7) ?x_344 : comm_ring (set A) := rat.comm_ring
  2033. failed is_def_eq
  2034. [class_instances] (7) ?x_344 : comm_ring (set A) := @nonzero_comm_ring.to_comm_ring ?x_367 ?x_368
  2035. [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := real.nonzero_comm_ring
  2036. failed is_def_eq
  2037. [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @polynomial.nonzero_comm_ring ?x_369 ?x_370
  2038. failed is_def_eq
  2039. [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @local_ring.to_nonzero_comm_ring ?x_371 ?x_372
  2040. [class_instances] (9) ?x_372 : local_ring (set A) := @discrete_field.local_ring ?x_373 ?x_374
  2041. [class_instances] (10) ?x_374 : discrete_field (set A) := complex.discrete_field
  2042. failed is_def_eq
  2043. [class_instances] (10) ?x_374 : discrete_field (set A) := real.discrete_field
  2044. failed is_def_eq
  2045. [class_instances] (10) ?x_374 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_375 ?x_376
  2046. failed is_def_eq
  2047. [class_instances] (10) ?x_374 : discrete_field (set A) := rat.discrete_field
  2048. failed is_def_eq
  2049. [class_instances] (10) ?x_374 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_377 ?x_378
  2050. [class_instances] (11) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2051. failed is_def_eq
  2052. [class_instances] (11) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2053. failed is_def_eq
  2054. [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @prod.nonzero_comm_ring ?x_369 ?x_370 ?x_371 ?x_372
  2055. failed is_def_eq
  2056. [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @euclidean_domain.to_nonzero_comm_ring ?x_373 ?x_374
  2057. [class_instances] (9) ?x_374 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_375 ?x_376
  2058. failed is_def_eq
  2059. [class_instances] (9) ?x_374 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_377 ?x_378
  2060. [class_instances] (10) ?x_378 : discrete_field (set A) := complex.discrete_field
  2061. failed is_def_eq
  2062. [class_instances] (10) ?x_378 : discrete_field (set A) := real.discrete_field
  2063. failed is_def_eq
  2064. [class_instances] (10) ?x_378 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_379 ?x_380
  2065. failed is_def_eq
  2066. [class_instances] (10) ?x_378 : discrete_field (set A) := rat.discrete_field
  2067. failed is_def_eq
  2068. [class_instances] (10) ?x_378 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_381 ?x_382
  2069. [class_instances] (11) ?x_382 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2070. failed is_def_eq
  2071. [class_instances] (11) ?x_382 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2072. failed is_def_eq
  2073. [class_instances] (9) ?x_374 : euclidean_domain (set A) := int.euclidean_domain
  2074. failed is_def_eq
  2075. [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := rat.nonzero_comm_ring
  2076. failed is_def_eq
  2077. [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @integral_domain.to_nonzero_comm_ring ?x_369 ?x_370
  2078. [class_instances] (9) ?x_370 : integral_domain (set A) := real.integral_domain
  2079. failed is_def_eq
  2080. [class_instances] (9) ?x_370 : integral_domain (set A) := @polynomial.integral_domain ?x_371 ?x_372
  2081. failed is_def_eq
  2082. [class_instances] (9) ?x_370 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_373 ?x_374 ?x_375 ?x_376
  2083. failed is_def_eq
  2084. [class_instances] (9) ?x_370 : integral_domain (set A) := @subring.domain ?x_377 ?x_378 ?x_379 ?x_380
  2085. failed is_def_eq
  2086. [class_instances] (9) ?x_370 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_381 ?x_382
  2087. [class_instances] (10) ?x_382 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_383 ?x_384
  2088. failed is_def_eq
  2089. [class_instances] (10) ?x_382 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_385 ?x_386
  2090. [class_instances] (11) ?x_386 : discrete_field (set A) := complex.discrete_field
  2091. failed is_def_eq
  2092. [class_instances] (11) ?x_386 : discrete_field (set A) := real.discrete_field
  2093. failed is_def_eq
  2094. [class_instances] (11) ?x_386 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_387 ?x_388
  2095. failed is_def_eq
  2096. [class_instances] (11) ?x_386 : discrete_field (set A) := rat.discrete_field
  2097. failed is_def_eq
  2098. [class_instances] (11) ?x_386 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_389 ?x_390
  2099. [class_instances] (12) ?x_390 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2100. failed is_def_eq
  2101. [class_instances] (12) ?x_390 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2102. failed is_def_eq
  2103. [class_instances] (10) ?x_382 : euclidean_domain (set A) := int.euclidean_domain
  2104. failed is_def_eq
  2105. [class_instances] (9) ?x_370 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_371 ?x_372
  2106. [class_instances] (10) ?x_372 : normalization_domain (set A) := @polynomial.normalization_domain ?x_373 ?x_374
  2107. failed is_def_eq
  2108. [class_instances] (10) ?x_372 : normalization_domain (set A) := int.normalization_domain
  2109. failed is_def_eq
  2110. [class_instances] (10) ?x_372 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_375 ?x_376
  2111. [class_instances] (11) ?x_376 : gcd_domain (set A) := int.gcd_domain
  2112. failed is_def_eq
  2113. [class_instances] (9) ?x_370 : integral_domain (set A) := rat.integral_domain
  2114. failed is_def_eq
  2115. [class_instances] (9) ?x_370 : integral_domain (set A) := @field.to_integral_domain ?x_371 ?x_372
  2116. [class_instances] (10) ?x_372 : field (set A) := real.field
  2117. failed is_def_eq
  2118. [class_instances] (10) ?x_372 : field (set A) := rat.field
  2119. failed is_def_eq
  2120. [class_instances] (10) ?x_372 : field (set A) := @linear_ordered_field.to_field ?x_373 ?x_374
  2121. [class_instances] (11) ?x_374 : linear_ordered_field (set A) := real.linear_ordered_field
  2122. failed is_def_eq
  2123. [class_instances] (11) ?x_374 : linear_ordered_field (set A) := rat.linear_ordered_field
  2124. failed is_def_eq
  2125. [class_instances] (11) ?x_374 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_375 ?x_376
  2126. [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2127. failed is_def_eq
  2128. [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2129. failed is_def_eq
  2130. [class_instances] (10) ?x_372 : field (set A) := @discrete_field.to_field ?x_373 ?x_374
  2131. [class_instances] (11) ?x_374 : discrete_field (set A) := complex.discrete_field
  2132. failed is_def_eq
  2133. [class_instances] (11) ?x_374 : discrete_field (set A) := real.discrete_field
  2134. failed is_def_eq
  2135. [class_instances] (11) ?x_374 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_375 ?x_376
  2136. failed is_def_eq
  2137. [class_instances] (11) ?x_374 : discrete_field (set A) := rat.discrete_field
  2138. failed is_def_eq
  2139. [class_instances] (11) ?x_374 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_377 ?x_378
  2140. [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2141. failed is_def_eq
  2142. [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2143. failed is_def_eq
  2144. [class_instances] (9) ?x_370 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_371 ?x_372 ?x_373
  2145. [class_instances] (10) ?x_372 : discrete_field (set A) := complex.discrete_field
  2146. failed is_def_eq
  2147. [class_instances] (10) ?x_372 : discrete_field (set A) := real.discrete_field
  2148. failed is_def_eq
  2149. [class_instances] (10) ?x_372 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_374 ?x_375
  2150. failed is_def_eq
  2151. [class_instances] (10) ?x_372 : discrete_field (set A) := rat.discrete_field
  2152. failed is_def_eq
  2153. [class_instances] (10) ?x_372 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_376 ?x_377
  2154. [class_instances] (11) ?x_377 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2155. failed is_def_eq
  2156. [class_instances] (11) ?x_377 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2157. failed is_def_eq
  2158. [class_instances] (9) ?x_370 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_371 ?x_372
  2159. [class_instances] (10) ?x_372 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  2160. failed is_def_eq
  2161. [class_instances] (10) ?x_372 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  2162. failed is_def_eq
  2163. [class_instances] (10) ?x_372 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_373 ?x_374
  2164. [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2165. failed is_def_eq
  2166. [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2167. failed is_def_eq
  2168. [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_375 ?x_376 ?x_377 ?x_378
  2169. [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2170. failed is_def_eq
  2171. [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_375 ?x_376
  2172. [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2173. failed is_def_eq
  2174. [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2175. failed is_def_eq
  2176. [class_instances] (7) ?x_344 : comm_ring (set A) := int.comm_ring
  2177. failed is_def_eq
  2178. [class_instances] (7) ?x_344 : comm_ring (set A) := @field.to_comm_ring ?x_345 ?x_346
  2179. [class_instances] (8) ?x_346 : field (set A) := real.field
  2180. failed is_def_eq
  2181. [class_instances] (8) ?x_346 : field (set A) := rat.field
  2182. failed is_def_eq
  2183. [class_instances] (8) ?x_346 : field (set A) := @linear_ordered_field.to_field ?x_347 ?x_348
  2184. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
  2185. failed is_def_eq
  2186. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
  2187. failed is_def_eq
  2188. [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
  2189. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2190. failed is_def_eq
  2191. [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2192. failed is_def_eq
  2193. [class_instances] (8) ?x_346 : field (set A) := @discrete_field.to_field ?x_347 ?x_348
  2194. [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
  2195. failed is_def_eq
  2196. [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
  2197. failed is_def_eq
  2198. [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_349 ?x_350
  2199. failed is_def_eq
  2200. [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
  2201. failed is_def_eq
  2202. [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_351 ?x_352
  2203. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2204. failed is_def_eq
  2205. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2206. failed is_def_eq
  2207. [class_instances] (7) ?x_344 : comm_ring (set A) := @integral_domain.to_comm_ring ?x_345 ?x_346
  2208. [class_instances] (8) ?x_346 : integral_domain (set A) := real.integral_domain
  2209. failed is_def_eq
  2210. [class_instances] (8) ?x_346 : integral_domain (set A) := @polynomial.integral_domain ?x_347 ?x_348
  2211. failed is_def_eq
  2212. [class_instances] (8) ?x_346 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_349 ?x_350 ?x_351 ?x_352
  2213. failed is_def_eq
  2214. [class_instances] (8) ?x_346 : integral_domain (set A) := @subring.domain ?x_353 ?x_354 ?x_355 ?x_356
  2215. failed is_def_eq
  2216. [class_instances] (8) ?x_346 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_357 ?x_358
  2217. [class_instances] (9) ?x_358 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_359 ?x_360
  2218. failed is_def_eq
  2219. [class_instances] (9) ?x_358 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_361 ?x_362
  2220. [class_instances] (10) ?x_362 : discrete_field (set A) := complex.discrete_field
  2221. failed is_def_eq
  2222. [class_instances] (10) ?x_362 : discrete_field (set A) := real.discrete_field
  2223. failed is_def_eq
  2224. [class_instances] (10) ?x_362 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_363 ?x_364
  2225. failed is_def_eq
  2226. [class_instances] (10) ?x_362 : discrete_field (set A) := rat.discrete_field
  2227. failed is_def_eq
  2228. [class_instances] (10) ?x_362 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_365 ?x_366
  2229. [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2230. failed is_def_eq
  2231. [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2232. failed is_def_eq
  2233. [class_instances] (9) ?x_358 : euclidean_domain (set A) := int.euclidean_domain
  2234. failed is_def_eq
  2235. [class_instances] (8) ?x_346 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_347 ?x_348
  2236. [class_instances] (9) ?x_348 : normalization_domain (set A) := @polynomial.normalization_domain ?x_349 ?x_350
  2237. failed is_def_eq
  2238. [class_instances] (9) ?x_348 : normalization_domain (set A) := int.normalization_domain
  2239. failed is_def_eq
  2240. [class_instances] (9) ?x_348 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_351 ?x_352
  2241. [class_instances] (10) ?x_352 : gcd_domain (set A) := int.gcd_domain
  2242. failed is_def_eq
  2243. [class_instances] (8) ?x_346 : integral_domain (set A) := rat.integral_domain
  2244. failed is_def_eq
  2245. [class_instances] (8) ?x_346 : integral_domain (set A) := @field.to_integral_domain ?x_347 ?x_348
  2246. [class_instances] (9) ?x_348 : field (set A) := real.field
  2247. failed is_def_eq
  2248. [class_instances] (9) ?x_348 : field (set A) := rat.field
  2249. failed is_def_eq
  2250. [class_instances] (9) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
  2251. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
  2252. failed is_def_eq
  2253. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
  2254. failed is_def_eq
  2255. [class_instances] (10) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
  2256. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2257. failed is_def_eq
  2258. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2259. failed is_def_eq
  2260. [class_instances] (9) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
  2261. [class_instances] (10) ?x_350 : discrete_field (set A) := complex.discrete_field
  2262. failed is_def_eq
  2263. [class_instances] (10) ?x_350 : discrete_field (set A) := real.discrete_field
  2264. failed is_def_eq
  2265. [class_instances] (10) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
  2266. failed is_def_eq
  2267. [class_instances] (10) ?x_350 : discrete_field (set A) := rat.discrete_field
  2268. failed is_def_eq
  2269. [class_instances] (10) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
  2270. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2271. failed is_def_eq
  2272. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2273. failed is_def_eq
  2274. [class_instances] (8) ?x_346 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_347 ?x_348 ?x_349
  2275. [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
  2276. failed is_def_eq
  2277. [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
  2278. failed is_def_eq
  2279. [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_350 ?x_351
  2280. failed is_def_eq
  2281. [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
  2282. failed is_def_eq
  2283. [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_352 ?x_353
  2284. [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2285. failed is_def_eq
  2286. [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2287. failed is_def_eq
  2288. [class_instances] (8) ?x_346 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_347 ?x_348
  2289. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  2290. failed is_def_eq
  2291. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  2292. failed is_def_eq
  2293. [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
  2294. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2295. failed is_def_eq
  2296. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2297. failed is_def_eq
  2298. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
  2299. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2300. failed is_def_eq
  2301. [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
  2302. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2303. failed is_def_eq
  2304. [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2305. failed is_def_eq
  2306. [class_instances] (5) ?x_334 : add_comm_group (set A) := @decidable_linear_ordered_comm_group.to_add_comm_group ?x_335 ?x_336
  2307. [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
  2308. failed is_def_eq
  2309. [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
  2310. failed is_def_eq
  2311. [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
  2312. failed is_def_eq
  2313. [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_337 ?x_338
  2314. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2315. failed is_def_eq
  2316. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2317. failed is_def_eq
  2318. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_339 ?x_340 ?x_341 ?x_342
  2319. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2320. failed is_def_eq
  2321. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_339 ?x_340
  2322. [class_instances] (8) ?x_340 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2323. failed is_def_eq
  2324. [class_instances] (8) ?x_340 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2325. failed is_def_eq
  2326. [class_instances] (5) ?x_334 : add_comm_group (set A) := @ordered_comm_group.to_add_comm_group ?x_335 ?x_336
  2327. [class_instances] (6) ?x_336 : ordered_comm_group (set A) := real.ordered_comm_group
  2328. failed is_def_eq
  2329. [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @pi.ordered_comm_group ?x_337 ?x_338 ?x_339
  2330. failed is_def_eq
  2331. [class_instances] (6) ?x_336 : ordered_comm_group (set A) := rat.ordered_comm_group
  2332. failed is_def_eq
  2333. [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @order_dual.ordered_comm_group ?x_340 ?x_341
  2334. failed is_def_eq
  2335. [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @nonneg_comm_group.to_ordered_comm_group ?x_342 ?x_343
  2336. [class_instances] (7) ?x_343 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_344 ?x_345
  2337. [class_instances] (7) ?x_343 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_344 ?x_345
  2338. [class_instances] (8) ?x_345 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_346 ?x_347
  2339. [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @ordered_ring.to_ordered_comm_group ?x_337 ?x_338
  2340. [class_instances] (7) ?x_338 : ordered_ring (set A) := real.ordered_ring
  2341. failed is_def_eq
  2342. [class_instances] (7) ?x_338 : ordered_ring (set A) := rat.ordered_ring
  2343. failed is_def_eq
  2344. [class_instances] (7) ?x_338 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_339 ?x_340
  2345. [class_instances] (8) ?x_340 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_341 ?x_342
  2346. [class_instances] (7) ?x_338 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_339 ?x_340
  2347. [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := real.linear_ordered_ring
  2348. failed is_def_eq
  2349. [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := rat.linear_ordered_ring
  2350. failed is_def_eq
  2351. [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_341 ?x_342
  2352. [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_341 ?x_342
  2353. [class_instances] (9) ?x_342 : linear_ordered_field (set A) := real.linear_ordered_field
  2354. failed is_def_eq
  2355. [class_instances] (9) ?x_342 : linear_ordered_field (set A) := rat.linear_ordered_field
  2356. failed is_def_eq
  2357. [class_instances] (9) ?x_342 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_343 ?x_344
  2358. [class_instances] (10) ?x_344 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2359. failed is_def_eq
  2360. [class_instances] (10) ?x_344 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2361. failed is_def_eq
  2362. [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_341 ?x_342
  2363. [class_instances] (9) ?x_342 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  2364. failed is_def_eq
  2365. [class_instances] (9) ?x_342 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  2366. failed is_def_eq
  2367. [class_instances] (9) ?x_342 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_343 ?x_344
  2368. [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2369. failed is_def_eq
  2370. [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2371. failed is_def_eq
  2372. [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_345 ?x_346 ?x_347 ?x_348
  2373. [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2374. failed is_def_eq
  2375. [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_345 ?x_346
  2376. [class_instances] (11) ?x_346 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2377. failed is_def_eq
  2378. [class_instances] (11) ?x_346 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2379. failed is_def_eq
  2380. [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @decidable_linear_ordered_comm_group.to_ordered_comm_group ?x_337 ?x_338
  2381. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
  2382. failed is_def_eq
  2383. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
  2384. failed is_def_eq
  2385. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
  2386. failed is_def_eq
  2387. [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_339 ?x_340
  2388. [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2389. failed is_def_eq
  2390. [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2391. failed is_def_eq
  2392. [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342 ?x_343 ?x_344
  2393. [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2394. failed is_def_eq
  2395. [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342
  2396. [class_instances] (9) ?x_342 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2397. failed is_def_eq
  2398. [class_instances] (9) ?x_342 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2399. failed is_def_eq
  2400. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @quotient_group.has_coe ?x_278 ?x_279 ?x_280 ?x_281
  2401. [class_instances] (4) ?x_279 : group (set A) := @quotient_group.group ?x_282 ?x_283 ?x_284 ?x_285
  2402. failed is_def_eq
  2403. [class_instances] (4) ?x_279 : group (set A) := @free_group.group ?x_286
  2404. failed is_def_eq
  2405. [class_instances] (4) ?x_279 : group (set A) := @linear_map.general_linear_group.group ?x_287 ?x_288 ?x_289 ?x_290 ?x_291
  2406. failed is_def_eq
  2407. [class_instances] (4) ?x_279 : group (set A) := @linear_map.automorphism_group ?x_292 ?x_293 ?x_294 ?x_295 ?x_296
  2408. failed is_def_eq
  2409. [class_instances] (4) ?x_279 : group (set A) := @prod.group ?x_297 ?x_298 ?x_299 ?x_300
  2410. failed is_def_eq
  2411. [class_instances] (4) ?x_279 : group (set A) := @pi.group ?x_301 ?x_302 ?x_303
  2412. failed is_def_eq
  2413. [class_instances] (4) ?x_279 : group (set A) := @subtype.group ?x_304 ?x_305 ?x_306 ?x_307
  2414. failed is_def_eq
  2415. [class_instances] (4) ?x_279 : group (set A) := @multiplicative.group ?x_308 ?x_309
  2416. failed is_def_eq
  2417. [class_instances] (4) ?x_279 : group (set A) := @units.group ?x_310 ?x_311
  2418. failed is_def_eq
  2419. [class_instances] (4) ?x_279 : group (set A) := @equiv.perm.perm_group ?x_312
  2420. failed is_def_eq
  2421. [class_instances] (4) ?x_279 : group (set A) := @comm_group.to_group ?x_313 ?x_314
  2422. [class_instances] (5) ?x_314 : comm_group (set A) := @abelianization.comm_group ?x_315 ?x_316
  2423. failed is_def_eq
  2424. [class_instances] (5) ?x_314 : comm_group (set A) := @quotient_group.comm_group ?x_317 ?x_318 ?x_319 ?x_320
  2425. failed is_def_eq
  2426. [class_instances] (5) ?x_314 : comm_group (set A) := @prod.comm_group ?x_321 ?x_322 ?x_323 ?x_324
  2427. failed is_def_eq
  2428. [class_instances] (5) ?x_314 : comm_group (set A) := @pi.comm_group ?x_325 ?x_326 ?x_327
  2429. failed is_def_eq
  2430. [class_instances] (5) ?x_314 : comm_group (set A) := @subtype.comm_group ?x_328 ?x_329 ?x_330 ?x_331
  2431. failed is_def_eq
  2432. [class_instances] (5) ?x_314 : comm_group (set A) := @multiplicative.comm_group ?x_332 ?x_333
  2433. failed is_def_eq
  2434. [class_instances] (5) ?x_314 : comm_group (set A) := @monoid_hom.comm_group ?x_334 ?x_335 ?x_336 ?x_337
  2435. failed is_def_eq
  2436. [class_instances] (5) ?x_314 : comm_group (set A) := @units.comm_group ?x_338 ?x_339
  2437. failed is_def_eq
  2438. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := enat.has_coe
  2439. failed is_def_eq
  2440. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := nat.primes.coe_pnat
  2441. failed is_def_eq
  2442. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := coe_pnat_nat
  2443. failed is_def_eq
  2444. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := nat.primes.coe_nat
  2445. failed is_def_eq
  2446. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @pfun.has_coe ?x_278 ?x_279
  2447. failed is_def_eq
  2448. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @roption.has_coe ?x_280
  2449. failed is_def_eq
  2450. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @multiset.has_coe ?x_281
  2451. failed is_def_eq
  2452. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := fin.fin_to_nat ?x_282
  2453. failed is_def_eq
  2454. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @add_monoid_hom.has_coe ?x_283 ?x_284 ?x_285 ?x_286
  2455. failed is_def_eq
  2456. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @monoid_hom.has_coe ?x_287 ?x_288 ?x_289 ?x_290
  2457. failed is_def_eq
  2458. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @units.has_coe ?x_291 ?x_292
  2459. failed is_def_eq
  2460. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := int.has_coe
  2461. failed is_def_eq
  2462. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @list.bin_tree_to_list ?x_293
  2463. failed is_def_eq
  2464. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := smt_tactic.has_coe ?x_294
  2465. failed is_def_eq
  2466. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @lean.parser.has_coe ?x_295
  2467. failed is_def_eq
  2468. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @tactic.ex_to_tac ?x_296
  2469. failed is_def_eq
  2470. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @tactic.opt_to_tac ?x_297
  2471. failed is_def_eq
  2472. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @expr.has_coe ?x_298 ?x_299
  2473. failed is_def_eq
  2474. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := string_to_format
  2475. failed is_def_eq
  2476. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := nat_to_format
  2477. failed is_def_eq
  2478. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := string_to_name
  2479. failed is_def_eq
  2480. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @coe_subtype ?x_300 ?x_301
  2481. failed is_def_eq
  2482. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := coe_bool_to_Prop
  2483. failed is_def_eq
  2484. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @znum_coe ?x_302 ?x_303 ?x_304 ?x_305 ?x_306
  2485. failed is_def_eq
  2486. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @num_nat_coe ?x_307 ?x_308 ?x_309 ?x_310
  2487. failed is_def_eq
  2488. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @pos_num_coe ?x_311 ?x_312 ?x_313 ?x_314
  2489. failed is_def_eq
  2490. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @rat.cast_coe ?x_315 ?x_316
  2491. failed is_def_eq
  2492. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @int.cast_coe ?x_317 ?x_318 ?x_319 ?x_320 ?x_321
  2493. failed is_def_eq
  2494. [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @nat.cast_coe ?x_322 ?x_323 ?x_324 ?x_325
  2495. failed is_def_eq
  2496. [class_instances] (2) ?x_273 : has_coe_t_aux (set A) ?x_272 := @coe_trans_aux ?x_275 ?x_276 ?x_277 ?x_278 ?x_279
  2497. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @lean.parser.has_coe' ?x_280
  2498. failed is_def_eq
  2499. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @subalgebra.coe_to_submodule ?x_281 ?x_282 ?x_283 ?x_284 ?x_285
  2500. failed is_def_eq
  2501. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @subalgebra.has_coe ?x_286 ?x_287 ?x_288 ?x_289 ?x_290
  2502. failed is_def_eq
  2503. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := complex.has_coe
  2504. failed is_def_eq
  2505. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := tactic.abel.has_coe
  2506. failed is_def_eq
  2507. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := int.snum_coe
  2508. failed is_def_eq
  2509. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := snum.has_coe
  2510. failed is_def_eq
  2511. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := tactic.ring.has_coe
  2512. failed is_def_eq
  2513. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @linear_equiv.has_coe ?x_291 ?x_292 ?x_293 ?x_294 ?x_295 ?x_296 ?x_297 ?x_298
  2514. failed is_def_eq
  2515. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @order_iso.has_coe ?x_299 ?x_300 ?x_301 ?x_302
  2516. failed is_def_eq
  2517. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @submodule.has_coe ?x_303 ?x_304 ?x_305 ?x_306 ?x_307
  2518. failed is_def_eq
  2519. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @quotient_add_group.has_coe ?x_308 ?x_309 ?x_310 ?x_311
  2520. [class_instances] (4) ?x_309 : add_group (set A) := @dfinsupp.add_group ?x_312 ?x_313 ?x_314
  2521. failed is_def_eq
  2522. [class_instances] (4) ?x_309 : add_group (set A) := @quotient_add_group.add_group ?x_315 ?x_316 ?x_317 ?x_318
  2523. failed is_def_eq
  2524. [class_instances] (4) ?x_309 : add_group (set A) := real.add_group
  2525. failed is_def_eq
  2526. [class_instances] (4) ?x_309 : add_group (set A) := @prod.add_group ?x_319 ?x_320 ?x_321 ?x_322
  2527. failed is_def_eq
  2528. [class_instances] (4) ?x_309 : add_group (set A) := @pi.add_group ?x_323 ?x_324 ?x_325
  2529. failed is_def_eq
  2530. [class_instances] (4) ?x_309 : add_group (set A) := @finsupp.add_group ?x_326 ?x_327 ?x_328
  2531. failed is_def_eq
  2532. [class_instances] (4) ?x_309 : add_group (set A) := @subtype.add_group ?x_329 ?x_330 ?x_331 ?x_332
  2533. failed is_def_eq
  2534. [class_instances] (4) ?x_309 : add_group (set A) := rat.add_group
  2535. failed is_def_eq
  2536. [class_instances] (4) ?x_309 : add_group (set A) := @additive.add_group ?x_333 ?x_334
  2537. failed is_def_eq
  2538. [class_instances] (4) ?x_309 : add_group (set A) := @add_comm_group.to_add_group ?x_335 ?x_336
  2539. [class_instances] (5) ?x_336 : add_comm_group (set A) := @tensor_product.add_comm_group ?x_337 ?x_338 ?x_339 ?x_340 ?x_341 ?x_342 ?x_343 ?x_344
  2540. failed is_def_eq
  2541. [class_instances] (5) ?x_336 : add_comm_group (set A) := @direct_sum.add_comm_group ?x_345 ?x_346 ?x_347 ?x_348
  2542. failed is_def_eq
  2543. [class_instances] (5) ?x_336 : add_comm_group (set A) := @dfinsupp.add_comm_group ?x_349 ?x_350 ?x_351
  2544. failed is_def_eq
  2545. [class_instances] (5) ?x_336 : add_comm_group (set A) := free_abelian_group.add_comm_group ?x_352
  2546. failed is_def_eq
  2547. [class_instances] (5) ?x_336 : add_comm_group (set A) := @quotient_add_group.add_comm_group ?x_353 ?x_354 ?x_355 ?x_356
  2548. failed is_def_eq
  2549. [class_instances] (5) ?x_336 : add_comm_group (set A) := real.add_comm_group
  2550. failed is_def_eq
  2551. [class_instances] (5) ?x_336 : add_comm_group (set A) := @submodule.quotient.add_comm_group ?x_357 ?x_358 ?x_359 ?x_360 ?x_361 ?x_362
  2552. failed is_def_eq
  2553. [class_instances] (5) ?x_336 : add_comm_group (set A) := @linear_map.add_comm_group ?x_363 ?x_364 ?x_365 ?x_366 ?x_367 ?x_368 ?x_369 ?x_370
  2554. failed is_def_eq
  2555. [class_instances] (5) ?x_336 : add_comm_group (set A) := @prod.add_comm_group ?x_371 ?x_372 ?x_373 ?x_374
  2556. failed is_def_eq
  2557. [class_instances] (5) ?x_336 : add_comm_group (set A) := @pi.add_comm_group ?x_375 ?x_376 ?x_377
  2558. failed is_def_eq
  2559. [class_instances] (5) ?x_336 : add_comm_group (set A) := @finsupp.add_comm_group ?x_378 ?x_379 ?x_380
  2560. failed is_def_eq
  2561. [class_instances] (5) ?x_336 : add_comm_group (set A) := @submodule.add_comm_group ?x_381 ?x_382 ?x_383 ?x_384 ?x_385 ?x_386
  2562. failed is_def_eq
  2563. [class_instances] (5) ?x_336 : add_comm_group (set A) := @subtype.add_comm_group ?x_387 ?x_388 ?x_389 ?x_390
  2564. failed is_def_eq
  2565. [class_instances] (5) ?x_336 : add_comm_group (set A) := rat.add_comm_group
  2566. failed is_def_eq
  2567. [class_instances] (5) ?x_336 : add_comm_group (set A) := @nonneg_comm_group.to_add_comm_group ?x_391 ?x_392
  2568. [class_instances] (6) ?x_392 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_393 ?x_394
  2569. [class_instances] (6) ?x_392 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_393 ?x_394
  2570. [class_instances] (7) ?x_394 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_395 ?x_396
  2571. [class_instances] (5) ?x_336 : add_comm_group (set A) := @additive.add_comm_group ?x_337 ?x_338
  2572. failed is_def_eq
  2573. [class_instances] (5) ?x_336 : add_comm_group (set A) := @add_monoid_hom.add_comm_group ?x_339 ?x_340 ?x_341 ?x_342
  2574. failed is_def_eq
  2575. [class_instances] (5) ?x_336 : add_comm_group (set A) := @ring.to_add_comm_group ?x_343 ?x_344
  2576. [class_instances] (6) ?x_344 : ring (set A) := @subalgebra.ring ?x_345 ?x_346 ?x_347 ?x_348 ?x_349 ?x_350
  2577. failed is_def_eq
  2578. [class_instances] (6) ?x_344 : ring (set A) := @algebra.comap.ring ?x_351 ?x_352 ?x_353 ?x_354 ?x_355 ?x_356 ?x_357 ?x_358
  2579. failed is_def_eq
  2580. [class_instances] (6) ?x_344 : ring (set A) := @free_abelian_group.ring ?x_359 ?x_360
  2581. failed is_def_eq
  2582. [class_instances] (6) ?x_344 : ring (set A) := real.ring
  2583. failed is_def_eq
  2584. [class_instances] (6) ?x_344 : ring (set A) := @cau_seq.ring ?x_361 ?x_362 ?x_363 ?x_364 ?x_365 ?x_366
  2585. failed is_def_eq
  2586. [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.polynomial_ring2 ?x_367 ?x_368 ?x_369
  2587. failed is_def_eq
  2588. [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.polynomial_ring ?x_370 ?x_371 ?x_372
  2589. failed is_def_eq
  2590. [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.option_ring ?x_373 ?x_374 ?x_375
  2591. failed is_def_eq
  2592. [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.ring_on_iter ?x_376 ?x_377 ?x_378 ?x_379
  2593. failed is_def_eq
  2594. [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.ring_on_sum ?x_380 ?x_381 ?x_382 ?x_383
  2595. failed is_def_eq
  2596. [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.ring ?x_384 ?x_385 ?x_386
  2597. failed is_def_eq
  2598. [class_instances] (6) ?x_344 : ring (set A) := @linear_map.endomorphism_ring ?x_387 ?x_388 ?x_389 ?x_390 ?x_391
  2599. failed is_def_eq
  2600. [class_instances] (6) ?x_344 : ring (set A) := @prod.ring ?x_392 ?x_393 ?x_394 ?x_395
  2601. failed is_def_eq
  2602. [class_instances] (6) ?x_344 : ring (set A) := @pi.ring ?x_396 ?x_397 ?x_398
  2603. failed is_def_eq
  2604. [class_instances] (6) ?x_344 : ring (set A) := @subtype.ring ?x_399 ?x_400 ?x_401 ?x_402
  2605. failed is_def_eq
  2606. [class_instances] (6) ?x_344 : ring (set A) := @subset.ring ?x_403 ?x_404 ?x_405 ?x_406
  2607. failed is_def_eq
  2608. [class_instances] (6) ?x_344 : ring (set A) := @finsupp.ring ?x_407 ?x_408 ?x_409 ?x_410
  2609. failed is_def_eq
  2610. [class_instances] (6) ?x_344 : ring (set A) := @nonneg_ring.to_ring ?x_411 ?x_412
  2611. [class_instances] (7) ?x_412 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_413 ?x_414
  2612. [class_instances] (6) ?x_344 : ring (set A) := @domain.to_ring ?x_345 ?x_346
  2613. [class_instances] (7) ?x_346 : domain (set A) := real.domain
  2614. failed is_def_eq
  2615. [class_instances] (7) ?x_346 : domain (set A) := @division_ring.to_domain ?x_347 ?x_348
  2616. [class_instances] (8) ?x_348 : division_ring (set A) := real.division_ring
  2617. failed is_def_eq
  2618. [class_instances] (8) ?x_348 : division_ring (set A) := rat.division_ring
  2619. failed is_def_eq
  2620. [class_instances] (8) ?x_348 : division_ring (set A) := @field.to_division_ring ?x_349 ?x_350
  2621. [class_instances] (9) ?x_350 : field (set A) := real.field
  2622. failed is_def_eq
  2623. [class_instances] (9) ?x_350 : field (set A) := rat.field
  2624. failed is_def_eq
  2625. [class_instances] (9) ?x_350 : field (set A) := @linear_ordered_field.to_field ?x_351 ?x_352
  2626. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := real.linear_ordered_field
  2627. failed is_def_eq
  2628. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := rat.linear_ordered_field
  2629. failed is_def_eq
  2630. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_353 ?x_354
  2631. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2632. failed is_def_eq
  2633. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2634. failed is_def_eq
  2635. [class_instances] (9) ?x_350 : field (set A) := @discrete_field.to_field ?x_351 ?x_352
  2636. [class_instances] (10) ?x_352 : discrete_field (set A) := complex.discrete_field
  2637. failed is_def_eq
  2638. [class_instances] (10) ?x_352 : discrete_field (set A) := real.discrete_field
  2639. failed is_def_eq
  2640. [class_instances] (10) ?x_352 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_353 ?x_354
  2641. failed is_def_eq
  2642. [class_instances] (10) ?x_352 : discrete_field (set A) := rat.discrete_field
  2643. failed is_def_eq
  2644. [class_instances] (10) ?x_352 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_355 ?x_356
  2645. [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2646. failed is_def_eq
  2647. [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2648. failed is_def_eq
  2649. [class_instances] (7) ?x_346 : domain (set A) := @linear_nonneg_ring.to_domain ?x_347 ?x_348
  2650. [class_instances] (7) ?x_346 : domain (set A) := @to_domain ?x_347 ?x_348
  2651. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := real.linear_ordered_ring
  2652. failed is_def_eq
  2653. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := rat.linear_ordered_ring
  2654. failed is_def_eq
  2655. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_349 ?x_350
  2656. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_349 ?x_350
  2657. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
  2658. failed is_def_eq
  2659. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
  2660. failed is_def_eq
  2661. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
  2662. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2663. failed is_def_eq
  2664. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2665. failed is_def_eq
  2666. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_349 ?x_350
  2667. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  2668. failed is_def_eq
  2669. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  2670. failed is_def_eq
  2671. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
  2672. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2673. failed is_def_eq
  2674. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2675. failed is_def_eq
  2676. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
  2677. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2678. failed is_def_eq
  2679. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
  2680. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2681. failed is_def_eq
  2682. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2683. failed is_def_eq
  2684. [class_instances] (7) ?x_346 : domain (set A) := @integral_domain.to_domain ?x_347 ?x_348
  2685. [class_instances] (8) ?x_348 : integral_domain (set A) := real.integral_domain
  2686. failed is_def_eq
  2687. [class_instances] (8) ?x_348 : integral_domain (set A) := @polynomial.integral_domain ?x_349 ?x_350
  2688. failed is_def_eq
  2689. [class_instances] (8) ?x_348 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_351 ?x_352 ?x_353 ?x_354
  2690. failed is_def_eq
  2691. [class_instances] (8) ?x_348 : integral_domain (set A) := @subring.domain ?x_355 ?x_356 ?x_357 ?x_358
  2692. failed is_def_eq
  2693. [class_instances] (8) ?x_348 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_359 ?x_360
  2694. [class_instances] (9) ?x_360 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_361 ?x_362
  2695. failed is_def_eq
  2696. [class_instances] (9) ?x_360 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_363 ?x_364
  2697. [class_instances] (10) ?x_364 : discrete_field (set A) := complex.discrete_field
  2698. failed is_def_eq
  2699. [class_instances] (10) ?x_364 : discrete_field (set A) := real.discrete_field
  2700. failed is_def_eq
  2701. [class_instances] (10) ?x_364 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_365 ?x_366
  2702. failed is_def_eq
  2703. [class_instances] (10) ?x_364 : discrete_field (set A) := rat.discrete_field
  2704. failed is_def_eq
  2705. [class_instances] (10) ?x_364 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_367 ?x_368
  2706. [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2707. failed is_def_eq
  2708. [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2709. failed is_def_eq
  2710. [class_instances] (9) ?x_360 : euclidean_domain (set A) := int.euclidean_domain
  2711. failed is_def_eq
  2712. [class_instances] (8) ?x_348 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_349 ?x_350
  2713. [class_instances] (9) ?x_350 : normalization_domain (set A) := @polynomial.normalization_domain ?x_351 ?x_352
  2714. failed is_def_eq
  2715. [class_instances] (9) ?x_350 : normalization_domain (set A) := int.normalization_domain
  2716. failed is_def_eq
  2717. [class_instances] (9) ?x_350 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_353 ?x_354
  2718. [class_instances] (10) ?x_354 : gcd_domain (set A) := int.gcd_domain
  2719. failed is_def_eq
  2720. [class_instances] (8) ?x_348 : integral_domain (set A) := rat.integral_domain
  2721. failed is_def_eq
  2722. [class_instances] (8) ?x_348 : integral_domain (set A) := @field.to_integral_domain ?x_349 ?x_350
  2723. [class_instances] (9) ?x_350 : field (set A) := real.field
  2724. failed is_def_eq
  2725. [class_instances] (9) ?x_350 : field (set A) := rat.field
  2726. failed is_def_eq
  2727. [class_instances] (9) ?x_350 : field (set A) := @linear_ordered_field.to_field ?x_351 ?x_352
  2728. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := real.linear_ordered_field
  2729. failed is_def_eq
  2730. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := rat.linear_ordered_field
  2731. failed is_def_eq
  2732. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_353 ?x_354
  2733. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2734. failed is_def_eq
  2735. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2736. failed is_def_eq
  2737. [class_instances] (9) ?x_350 : field (set A) := @discrete_field.to_field ?x_351 ?x_352
  2738. [class_instances] (10) ?x_352 : discrete_field (set A) := complex.discrete_field
  2739. failed is_def_eq
  2740. [class_instances] (10) ?x_352 : discrete_field (set A) := real.discrete_field
  2741. failed is_def_eq
  2742. [class_instances] (10) ?x_352 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_353 ?x_354
  2743. failed is_def_eq
  2744. [class_instances] (10) ?x_352 : discrete_field (set A) := rat.discrete_field
  2745. failed is_def_eq
  2746. [class_instances] (10) ?x_352 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_355 ?x_356
  2747. [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2748. failed is_def_eq
  2749. [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2750. failed is_def_eq
  2751. [class_instances] (8) ?x_348 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_349 ?x_350 ?x_351
  2752. [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
  2753. failed is_def_eq
  2754. [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
  2755. failed is_def_eq
  2756. [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_352 ?x_353
  2757. failed is_def_eq
  2758. [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
  2759. failed is_def_eq
  2760. [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_354 ?x_355
  2761. [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2762. failed is_def_eq
  2763. [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2764. failed is_def_eq
  2765. [class_instances] (8) ?x_348 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_349 ?x_350
  2766. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  2767. failed is_def_eq
  2768. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  2769. failed is_def_eq
  2770. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
  2771. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2772. failed is_def_eq
  2773. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2774. failed is_def_eq
  2775. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
  2776. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2777. failed is_def_eq
  2778. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
  2779. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2780. failed is_def_eq
  2781. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2782. failed is_def_eq
  2783. [class_instances] (6) ?x_344 : ring (set A) := int.ring
  2784. failed is_def_eq
  2785. [class_instances] (6) ?x_344 : ring (set A) := @division_ring.to_ring ?x_345 ?x_346
  2786. [class_instances] (7) ?x_346 : division_ring (set A) := real.division_ring
  2787. failed is_def_eq
  2788. [class_instances] (7) ?x_346 : division_ring (set A) := rat.division_ring
  2789. failed is_def_eq
  2790. [class_instances] (7) ?x_346 : division_ring (set A) := @field.to_division_ring ?x_347 ?x_348
  2791. [class_instances] (8) ?x_348 : field (set A) := real.field
  2792. failed is_def_eq
  2793. [class_instances] (8) ?x_348 : field (set A) := rat.field
  2794. failed is_def_eq
  2795. [class_instances] (8) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
  2796. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
  2797. failed is_def_eq
  2798. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
  2799. failed is_def_eq
  2800. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
  2801. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2802. failed is_def_eq
  2803. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2804. failed is_def_eq
  2805. [class_instances] (8) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
  2806. [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
  2807. failed is_def_eq
  2808. [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
  2809. failed is_def_eq
  2810. [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
  2811. failed is_def_eq
  2812. [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
  2813. failed is_def_eq
  2814. [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
  2815. [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2816. failed is_def_eq
  2817. [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2818. failed is_def_eq
  2819. [class_instances] (6) ?x_344 : ring (set A) := @ordered_ring.to_ring ?x_345 ?x_346
  2820. [class_instances] (7) ?x_346 : ordered_ring (set A) := real.ordered_ring
  2821. failed is_def_eq
  2822. [class_instances] (7) ?x_346 : ordered_ring (set A) := rat.ordered_ring
  2823. failed is_def_eq
  2824. [class_instances] (7) ?x_346 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_347 ?x_348
  2825. [class_instances] (8) ?x_348 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_349 ?x_350
  2826. [class_instances] (7) ?x_346 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_347 ?x_348
  2827. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := real.linear_ordered_ring
  2828. failed is_def_eq
  2829. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := rat.linear_ordered_ring
  2830. failed is_def_eq
  2831. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_349 ?x_350
  2832. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_349 ?x_350
  2833. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
  2834. failed is_def_eq
  2835. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
  2836. failed is_def_eq
  2837. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
  2838. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2839. failed is_def_eq
  2840. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2841. failed is_def_eq
  2842. [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_349 ?x_350
  2843. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  2844. failed is_def_eq
  2845. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  2846. failed is_def_eq
  2847. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
  2848. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  2849. failed is_def_eq
  2850. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  2851. failed is_def_eq
  2852. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
  2853. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  2854. failed is_def_eq
  2855. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
  2856. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2857. failed is_def_eq
  2858. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2859. failed is_def_eq
  2860. [class_instances] (6) ?x_344 : ring (set A) := @comm_ring.to_ring ?x_345 ?x_346
  2861. [class_instances] (7) ?x_346 : comm_ring (set A) := _inst_1
  2862. failed is_def_eq
  2863. [class_instances] (7) ?x_346 : comm_ring (set A) := @subalgebra.comm_ring ?x_347 ?x_348 ?x_349 ?x_350 ?x_351 ?x_352
  2864. failed is_def_eq
  2865. [class_instances] (7) ?x_346 : comm_ring (set A) := @algebra.comap.comm_ring ?x_353 ?x_354 ?x_355 ?x_356 ?x_357 ?x_358 ?x_359 ?x_360
  2866. failed is_def_eq
  2867. [class_instances] (7) ?x_346 : comm_ring (set A) := @free_abelian_group.comm_ring ?x_361 ?x_362
  2868. failed is_def_eq
  2869. [class_instances] (7) ?x_346 : comm_ring (set A) := complex.comm_ring
  2870. failed is_def_eq
  2871. [class_instances] (7) ?x_346 : comm_ring (set A) := real.comm_ring
  2872. failed is_def_eq
  2873. [class_instances] (7) ?x_346 : comm_ring (set A) := @cau_seq.completion.comm_ring ?x_363 ?x_364 ?x_365 ?x_366 ?x_367 ?x_368
  2874. failed is_def_eq
  2875. [class_instances] (7) ?x_346 : comm_ring (set A) := @cau_seq.comm_ring ?x_369 ?x_370 ?x_371 ?x_372 ?x_373 ?x_374
  2876. failed is_def_eq
  2877. [class_instances] (7) ?x_346 : comm_ring (set A) := @mv_polynomial.comm_ring ?x_375 ?x_376 ?x_377
  2878. failed is_def_eq
  2879. [class_instances] (7) ?x_346 : comm_ring (set A) := @polynomial.comm_ring ?x_378 ?x_379
  2880. failed is_def_eq
  2881. [class_instances] (7) ?x_346 : comm_ring (set A) := @local_ring.comm_ring ?x_380 ?x_381
  2882. [class_instances] (8) ?x_381 : local_ring (set A) := @discrete_field.local_ring ?x_382 ?x_383
  2883. [class_instances] (9) ?x_383 : discrete_field (set A) := complex.discrete_field
  2884. failed is_def_eq
  2885. [class_instances] (9) ?x_383 : discrete_field (set A) := real.discrete_field
  2886. failed is_def_eq
  2887. [class_instances] (9) ?x_383 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_384 ?x_385
  2888. failed is_def_eq
  2889. [class_instances] (9) ?x_383 : discrete_field (set A) := rat.discrete_field
  2890. failed is_def_eq
  2891. [class_instances] (9) ?x_383 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_386 ?x_387
  2892. [class_instances] (10) ?x_387 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2893. failed is_def_eq
  2894. [class_instances] (10) ?x_387 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2895. failed is_def_eq
  2896. [class_instances] (7) ?x_346 : comm_ring (set A) := @ideal.quotient.comm_ring ?x_347 ?x_348 ?x_349
  2897. failed is_def_eq
  2898. [class_instances] (7) ?x_346 : comm_ring (set A) := @prod.comm_ring ?x_350 ?x_351 ?x_352 ?x_353
  2899. failed is_def_eq
  2900. [class_instances] (7) ?x_346 : comm_ring (set A) := @pi.comm_ring ?x_354 ?x_355 ?x_356
  2901. failed is_def_eq
  2902. [class_instances] (7) ?x_346 : comm_ring (set A) := @subtype.comm_ring ?x_357 ?x_358 ?x_359 ?x_360
  2903. failed is_def_eq
  2904. [class_instances] (7) ?x_346 : comm_ring (set A) := @subset.comm_ring ?x_361 ?x_362 ?x_363 ?x_364
  2905. failed is_def_eq
  2906. [class_instances] (7) ?x_346 : comm_ring (set A) := @finsupp.comm_ring ?x_365 ?x_366 ?x_367 ?x_368
  2907. failed is_def_eq
  2908. [class_instances] (7) ?x_346 : comm_ring (set A) := rat.comm_ring
  2909. failed is_def_eq
  2910. [class_instances] (7) ?x_346 : comm_ring (set A) := @nonzero_comm_ring.to_comm_ring ?x_369 ?x_370
  2911. [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := real.nonzero_comm_ring
  2912. failed is_def_eq
  2913. [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @polynomial.nonzero_comm_ring ?x_371 ?x_372
  2914. failed is_def_eq
  2915. [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @local_ring.to_nonzero_comm_ring ?x_373 ?x_374
  2916. [class_instances] (9) ?x_374 : local_ring (set A) := @discrete_field.local_ring ?x_375 ?x_376
  2917. [class_instances] (10) ?x_376 : discrete_field (set A) := complex.discrete_field
  2918. failed is_def_eq
  2919. [class_instances] (10) ?x_376 : discrete_field (set A) := real.discrete_field
  2920. failed is_def_eq
  2921. [class_instances] (10) ?x_376 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_377 ?x_378
  2922. failed is_def_eq
  2923. [class_instances] (10) ?x_376 : discrete_field (set A) := rat.discrete_field
  2924. failed is_def_eq
  2925. [class_instances] (10) ?x_376 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_379 ?x_380
  2926. [class_instances] (11) ?x_380 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2927. failed is_def_eq
  2928. [class_instances] (11) ?x_380 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2929. failed is_def_eq
  2930. [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @prod.nonzero_comm_ring ?x_371 ?x_372 ?x_373 ?x_374
  2931. failed is_def_eq
  2932. [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @euclidean_domain.to_nonzero_comm_ring ?x_375 ?x_376
  2933. [class_instances] (9) ?x_376 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_377 ?x_378
  2934. failed is_def_eq
  2935. [class_instances] (9) ?x_376 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_379 ?x_380
  2936. [class_instances] (10) ?x_380 : discrete_field (set A) := complex.discrete_field
  2937. failed is_def_eq
  2938. [class_instances] (10) ?x_380 : discrete_field (set A) := real.discrete_field
  2939. failed is_def_eq
  2940. [class_instances] (10) ?x_380 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_381 ?x_382
  2941. failed is_def_eq
  2942. [class_instances] (10) ?x_380 : discrete_field (set A) := rat.discrete_field
  2943. failed is_def_eq
  2944. [class_instances] (10) ?x_380 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_383 ?x_384
  2945. [class_instances] (11) ?x_384 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2946. failed is_def_eq
  2947. [class_instances] (11) ?x_384 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2948. failed is_def_eq
  2949. [class_instances] (9) ?x_376 : euclidean_domain (set A) := int.euclidean_domain
  2950. failed is_def_eq
  2951. [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := rat.nonzero_comm_ring
  2952. failed is_def_eq
  2953. [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @integral_domain.to_nonzero_comm_ring ?x_371 ?x_372
  2954. [class_instances] (9) ?x_372 : integral_domain (set A) := real.integral_domain
  2955. failed is_def_eq
  2956. [class_instances] (9) ?x_372 : integral_domain (set A) := @polynomial.integral_domain ?x_373 ?x_374
  2957. failed is_def_eq
  2958. [class_instances] (9) ?x_372 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_375 ?x_376 ?x_377 ?x_378
  2959. failed is_def_eq
  2960. [class_instances] (9) ?x_372 : integral_domain (set A) := @subring.domain ?x_379 ?x_380 ?x_381 ?x_382
  2961. failed is_def_eq
  2962. [class_instances] (9) ?x_372 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_383 ?x_384
  2963. [class_instances] (10) ?x_384 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_385 ?x_386
  2964. failed is_def_eq
  2965. [class_instances] (10) ?x_384 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_387 ?x_388
  2966. [class_instances] (11) ?x_388 : discrete_field (set A) := complex.discrete_field
  2967. failed is_def_eq
  2968. [class_instances] (11) ?x_388 : discrete_field (set A) := real.discrete_field
  2969. failed is_def_eq
  2970. [class_instances] (11) ?x_388 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_389 ?x_390
  2971. failed is_def_eq
  2972. [class_instances] (11) ?x_388 : discrete_field (set A) := rat.discrete_field
  2973. failed is_def_eq
  2974. [class_instances] (11) ?x_388 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_391 ?x_392
  2975. [class_instances] (12) ?x_392 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  2976. failed is_def_eq
  2977. [class_instances] (12) ?x_392 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  2978. failed is_def_eq
  2979. [class_instances] (10) ?x_384 : euclidean_domain (set A) := int.euclidean_domain
  2980. failed is_def_eq
  2981. [class_instances] (9) ?x_372 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_373 ?x_374
  2982. [class_instances] (10) ?x_374 : normalization_domain (set A) := @polynomial.normalization_domain ?x_375 ?x_376
  2983. failed is_def_eq
  2984. [class_instances] (10) ?x_374 : normalization_domain (set A) := int.normalization_domain
  2985. failed is_def_eq
  2986. [class_instances] (10) ?x_374 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_377 ?x_378
  2987. [class_instances] (11) ?x_378 : gcd_domain (set A) := int.gcd_domain
  2988. failed is_def_eq
  2989. [class_instances] (9) ?x_372 : integral_domain (set A) := rat.integral_domain
  2990. failed is_def_eq
  2991. [class_instances] (9) ?x_372 : integral_domain (set A) := @field.to_integral_domain ?x_373 ?x_374
  2992. [class_instances] (10) ?x_374 : field (set A) := real.field
  2993. failed is_def_eq
  2994. [class_instances] (10) ?x_374 : field (set A) := rat.field
  2995. failed is_def_eq
  2996. [class_instances] (10) ?x_374 : field (set A) := @linear_ordered_field.to_field ?x_375 ?x_376
  2997. [class_instances] (11) ?x_376 : linear_ordered_field (set A) := real.linear_ordered_field
  2998. failed is_def_eq
  2999. [class_instances] (11) ?x_376 : linear_ordered_field (set A) := rat.linear_ordered_field
  3000. failed is_def_eq
  3001. [class_instances] (11) ?x_376 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_377 ?x_378
  3002. [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3003. failed is_def_eq
  3004. [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3005. failed is_def_eq
  3006. [class_instances] (10) ?x_374 : field (set A) := @discrete_field.to_field ?x_375 ?x_376
  3007. [class_instances] (11) ?x_376 : discrete_field (set A) := complex.discrete_field
  3008. failed is_def_eq
  3009. [class_instances] (11) ?x_376 : discrete_field (set A) := real.discrete_field
  3010. failed is_def_eq
  3011. [class_instances] (11) ?x_376 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_377 ?x_378
  3012. failed is_def_eq
  3013. [class_instances] (11) ?x_376 : discrete_field (set A) := rat.discrete_field
  3014. failed is_def_eq
  3015. [class_instances] (11) ?x_376 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_379 ?x_380
  3016. [class_instances] (12) ?x_380 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3017. failed is_def_eq
  3018. [class_instances] (12) ?x_380 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3019. failed is_def_eq
  3020. [class_instances] (9) ?x_372 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_373 ?x_374 ?x_375
  3021. [class_instances] (10) ?x_374 : discrete_field (set A) := complex.discrete_field
  3022. failed is_def_eq
  3023. [class_instances] (10) ?x_374 : discrete_field (set A) := real.discrete_field
  3024. failed is_def_eq
  3025. [class_instances] (10) ?x_374 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_376 ?x_377
  3026. failed is_def_eq
  3027. [class_instances] (10) ?x_374 : discrete_field (set A) := rat.discrete_field
  3028. failed is_def_eq
  3029. [class_instances] (10) ?x_374 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_378 ?x_379
  3030. [class_instances] (11) ?x_379 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3031. failed is_def_eq
  3032. [class_instances] (11) ?x_379 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3033. failed is_def_eq
  3034. [class_instances] (9) ?x_372 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_373 ?x_374
  3035. [class_instances] (10) ?x_374 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  3036. failed is_def_eq
  3037. [class_instances] (10) ?x_374 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  3038. failed is_def_eq
  3039. [class_instances] (10) ?x_374 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_375 ?x_376
  3040. [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  3041. failed is_def_eq
  3042. [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  3043. failed is_def_eq
  3044. [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_377 ?x_378 ?x_379 ?x_380
  3045. [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  3046. failed is_def_eq
  3047. [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_377 ?x_378
  3048. [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3049. failed is_def_eq
  3050. [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3051. failed is_def_eq
  3052. [class_instances] (7) ?x_346 : comm_ring (set A) := int.comm_ring
  3053. failed is_def_eq
  3054. [class_instances] (7) ?x_346 : comm_ring (set A) := @field.to_comm_ring ?x_347 ?x_348
  3055. [class_instances] (8) ?x_348 : field (set A) := real.field
  3056. failed is_def_eq
  3057. [class_instances] (8) ?x_348 : field (set A) := rat.field
  3058. failed is_def_eq
  3059. [class_instances] (8) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
  3060. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
  3061. failed is_def_eq
  3062. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
  3063. failed is_def_eq
  3064. [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
  3065. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3066. failed is_def_eq
  3067. [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3068. failed is_def_eq
  3069. [class_instances] (8) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
  3070. [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
  3071. failed is_def_eq
  3072. [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
  3073. failed is_def_eq
  3074. [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
  3075. failed is_def_eq
  3076. [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
  3077. failed is_def_eq
  3078. [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
  3079. [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3080. failed is_def_eq
  3081. [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3082. failed is_def_eq
  3083. [class_instances] (7) ?x_346 : comm_ring (set A) := @integral_domain.to_comm_ring ?x_347 ?x_348
  3084. [class_instances] (8) ?x_348 : integral_domain (set A) := real.integral_domain
  3085. failed is_def_eq
  3086. [class_instances] (8) ?x_348 : integral_domain (set A) := @polynomial.integral_domain ?x_349 ?x_350
  3087. failed is_def_eq
  3088. [class_instances] (8) ?x_348 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_351 ?x_352 ?x_353 ?x_354
  3089. failed is_def_eq
  3090. [class_instances] (8) ?x_348 : integral_domain (set A) := @subring.domain ?x_355 ?x_356 ?x_357 ?x_358
  3091. failed is_def_eq
  3092. [class_instances] (8) ?x_348 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_359 ?x_360
  3093. [class_instances] (9) ?x_360 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_361 ?x_362
  3094. failed is_def_eq
  3095. [class_instances] (9) ?x_360 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_363 ?x_364
  3096. [class_instances] (10) ?x_364 : discrete_field (set A) := complex.discrete_field
  3097. failed is_def_eq
  3098. [class_instances] (10) ?x_364 : discrete_field (set A) := real.discrete_field
  3099. failed is_def_eq
  3100. [class_instances] (10) ?x_364 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_365 ?x_366
  3101. failed is_def_eq
  3102. [class_instances] (10) ?x_364 : discrete_field (set A) := rat.discrete_field
  3103. failed is_def_eq
  3104. [class_instances] (10) ?x_364 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_367 ?x_368
  3105. [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3106. failed is_def_eq
  3107. [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3108. failed is_def_eq
  3109. [class_instances] (9) ?x_360 : euclidean_domain (set A) := int.euclidean_domain
  3110. failed is_def_eq
  3111. [class_instances] (8) ?x_348 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_349 ?x_350
  3112. [class_instances] (9) ?x_350 : normalization_domain (set A) := @polynomial.normalization_domain ?x_351 ?x_352
  3113. failed is_def_eq
  3114. [class_instances] (9) ?x_350 : normalization_domain (set A) := int.normalization_domain
  3115. failed is_def_eq
  3116. [class_instances] (9) ?x_350 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_353 ?x_354
  3117. [class_instances] (10) ?x_354 : gcd_domain (set A) := int.gcd_domain
  3118. failed is_def_eq
  3119. [class_instances] (8) ?x_348 : integral_domain (set A) := rat.integral_domain
  3120. failed is_def_eq
  3121. [class_instances] (8) ?x_348 : integral_domain (set A) := @field.to_integral_domain ?x_349 ?x_350
  3122. [class_instances] (9) ?x_350 : field (set A) := real.field
  3123. failed is_def_eq
  3124. [class_instances] (9) ?x_350 : field (set A) := rat.field
  3125. failed is_def_eq
  3126. [class_instances] (9) ?x_350 : field (set A) := @linear_ordered_field.to_field ?x_351 ?x_352
  3127. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := real.linear_ordered_field
  3128. failed is_def_eq
  3129. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := rat.linear_ordered_field
  3130. failed is_def_eq
  3131. [class_instances] (10) ?x_352 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_353 ?x_354
  3132. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3133. failed is_def_eq
  3134. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3135. failed is_def_eq
  3136. [class_instances] (9) ?x_350 : field (set A) := @discrete_field.to_field ?x_351 ?x_352
  3137. [class_instances] (10) ?x_352 : discrete_field (set A) := complex.discrete_field
  3138. failed is_def_eq
  3139. [class_instances] (10) ?x_352 : discrete_field (set A) := real.discrete_field
  3140. failed is_def_eq
  3141. [class_instances] (10) ?x_352 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_353 ?x_354
  3142. failed is_def_eq
  3143. [class_instances] (10) ?x_352 : discrete_field (set A) := rat.discrete_field
  3144. failed is_def_eq
  3145. [class_instances] (10) ?x_352 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_355 ?x_356
  3146. [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3147. failed is_def_eq
  3148. [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3149. failed is_def_eq
  3150. [class_instances] (8) ?x_348 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_349 ?x_350 ?x_351
  3151. [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
  3152. failed is_def_eq
  3153. [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
  3154. failed is_def_eq
  3155. [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_352 ?x_353
  3156. failed is_def_eq
  3157. [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
  3158. failed is_def_eq
  3159. [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_354 ?x_355
  3160. [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3161. failed is_def_eq
  3162. [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3163. failed is_def_eq
  3164. [class_instances] (8) ?x_348 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_349 ?x_350
  3165. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  3166. failed is_def_eq
  3167. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  3168. failed is_def_eq
  3169. [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
  3170. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  3171. failed is_def_eq
  3172. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  3173. failed is_def_eq
  3174. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
  3175. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  3176. failed is_def_eq
  3177. [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
  3178. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3179. failed is_def_eq
  3180. [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3181. failed is_def_eq
  3182. [class_instances] (5) ?x_336 : add_comm_group (set A) := @decidable_linear_ordered_comm_group.to_add_comm_group ?x_337 ?x_338
  3183. [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
  3184. failed is_def_eq
  3185. [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
  3186. failed is_def_eq
  3187. [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
  3188. failed is_def_eq
  3189. [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_339 ?x_340
  3190. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  3191. failed is_def_eq
  3192. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  3193. failed is_def_eq
  3194. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342 ?x_343 ?x_344
  3195. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  3196. failed is_def_eq
  3197. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342
  3198. [class_instances] (8) ?x_342 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3199. failed is_def_eq
  3200. [class_instances] (8) ?x_342 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3201. failed is_def_eq
  3202. [class_instances] (5) ?x_336 : add_comm_group (set A) := @ordered_comm_group.to_add_comm_group ?x_337 ?x_338
  3203. [class_instances] (6) ?x_338 : ordered_comm_group (set A) := real.ordered_comm_group
  3204. failed is_def_eq
  3205. [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @pi.ordered_comm_group ?x_339 ?x_340 ?x_341
  3206. failed is_def_eq
  3207. [class_instances] (6) ?x_338 : ordered_comm_group (set A) := rat.ordered_comm_group
  3208. failed is_def_eq
  3209. [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @order_dual.ordered_comm_group ?x_342 ?x_343
  3210. failed is_def_eq
  3211. [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @nonneg_comm_group.to_ordered_comm_group ?x_344 ?x_345
  3212. [class_instances] (7) ?x_345 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_346 ?x_347
  3213. [class_instances] (7) ?x_345 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_346 ?x_347
  3214. [class_instances] (8) ?x_347 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_348 ?x_349
  3215. [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @ordered_ring.to_ordered_comm_group ?x_339 ?x_340
  3216. [class_instances] (7) ?x_340 : ordered_ring (set A) := real.ordered_ring
  3217. failed is_def_eq
  3218. [class_instances] (7) ?x_340 : ordered_ring (set A) := rat.ordered_ring
  3219. failed is_def_eq
  3220. [class_instances] (7) ?x_340 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_341 ?x_342
  3221. [class_instances] (8) ?x_342 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_343 ?x_344
  3222. [class_instances] (7) ?x_340 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_341 ?x_342
  3223. [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := real.linear_ordered_ring
  3224. failed is_def_eq
  3225. [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := rat.linear_ordered_ring
  3226. failed is_def_eq
  3227. [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_343 ?x_344
  3228. [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_343 ?x_344
  3229. [class_instances] (9) ?x_344 : linear_ordered_field (set A) := real.linear_ordered_field
  3230. failed is_def_eq
  3231. [class_instances] (9) ?x_344 : linear_ordered_field (set A) := rat.linear_ordered_field
  3232. failed is_def_eq
  3233. [class_instances] (9) ?x_344 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_345 ?x_346
  3234. [class_instances] (10) ?x_346 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3235. failed is_def_eq
  3236. [class_instances] (10) ?x_346 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3237. failed is_def_eq
  3238. [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_343 ?x_344
  3239. [class_instances] (9) ?x_344 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
  3240. failed is_def_eq
  3241. [class_instances] (9) ?x_344 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
  3242. failed is_def_eq
  3243. [class_instances] (9) ?x_344 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_345 ?x_346
  3244. [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  3245. failed is_def_eq
  3246. [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  3247. failed is_def_eq
  3248. [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_347 ?x_348 ?x_349 ?x_350
  3249. [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  3250. failed is_def_eq
  3251. [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_347 ?x_348
  3252. [class_instances] (11) ?x_348 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3253. failed is_def_eq
  3254. [class_instances] (11) ?x_348 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3255. failed is_def_eq
  3256. [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @decidable_linear_ordered_comm_group.to_ordered_comm_group ?x_339 ?x_340
  3257. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
  3258. failed is_def_eq
  3259. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
  3260. failed is_def_eq
  3261. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
  3262. failed is_def_eq
  3263. [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_341 ?x_342
  3264. [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
  3265. failed is_def_eq
  3266. [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
  3267. failed is_def_eq
  3268. [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_343 ?x_344 ?x_345 ?x_346
  3269. [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
  3270. failed is_def_eq
  3271. [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_343 ?x_344
  3272. [class_instances] (9) ?x_344 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
  3273. failed is_def_eq
  3274. [class_instances] (9) ?x_344 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
  3275. failed is_def_eq
  3276. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @quotient_group.has_coe ?x_280 ?x_281 ?x_282 ?x_283
  3277. [class_instances] (4) ?x_281 : group (set A) := @quotient_group.group ?x_284 ?x_285 ?x_286 ?x_287
  3278. failed is_def_eq
  3279. [class_instances] (4) ?x_281 : group (set A) := @free_group.group ?x_288
  3280. failed is_def_eq
  3281. [class_instances] (4) ?x_281 : group (set A) := @linear_map.general_linear_group.group ?x_289 ?x_290 ?x_291 ?x_292 ?x_293
  3282. failed is_def_eq
  3283. [class_instances] (4) ?x_281 : group (set A) := @linear_map.automorphism_group ?x_294 ?x_295 ?x_296 ?x_297 ?x_298
  3284. failed is_def_eq
  3285. [class_instances] (4) ?x_281 : group (set A) := @prod.group ?x_299 ?x_300 ?x_301 ?x_302
  3286. failed is_def_eq
  3287. [class_instances] (4) ?x_281 : group (set A) := @pi.group ?x_303 ?x_304 ?x_305
  3288. failed is_def_eq
  3289. [class_instances] (4) ?x_281 : group (set A) := @subtype.group ?x_306 ?x_307 ?x_308 ?x_309
  3290. failed is_def_eq
  3291. [class_instances] (4) ?x_281 : group (set A) := @multiplicative.group ?x_310 ?x_311
  3292. failed is_def_eq
  3293. [class_instances] (4) ?x_281 : group (set A) := @units.group ?x_312 ?x_313
  3294. failed is_def_eq
  3295. [class_instances] (4) ?x_281 : group (set A) := @equiv.perm.perm_group ?x_314
  3296. failed is_def_eq
  3297. [class_instances] (4) ?x_281 : group (set A) := @comm_group.to_group ?x_315 ?x_316
  3298. [class_instances] (5) ?x_316 : comm_group (set A) := @abelianization.comm_group ?x_317 ?x_318
  3299. failed is_def_eq
  3300. [class_instances] (5) ?x_316 : comm_group (set A) := @quotient_group.comm_group ?x_319 ?x_320 ?x_321 ?x_322
  3301. failed is_def_eq
  3302. [class_instances] (5) ?x_316 : comm_group (set A) := @prod.comm_group ?x_323 ?x_324 ?x_325 ?x_326
  3303. failed is_def_eq
  3304. [class_instances] (5) ?x_316 : comm_group (set A) := @pi.comm_group ?x_327 ?x_328 ?x_329
  3305. failed is_def_eq
  3306. [class_instances] (5) ?x_316 : comm_group (set A) := @subtype.comm_group ?x_330 ?x_331 ?x_332 ?x_333
  3307. failed is_def_eq
  3308. [class_instances] (5) ?x_316 : comm_group (set A) := @multiplicative.comm_group ?x_334 ?x_335
  3309. failed is_def_eq
  3310. [class_instances] (5) ?x_316 : comm_group (set A) := @monoid_hom.comm_group ?x_336 ?x_337 ?x_338 ?x_339
  3311. failed is_def_eq
  3312. [class_instances] (5) ?x_316 : comm_group (set A) := @units.comm_group ?x_340 ?x_341
  3313. failed is_def_eq
  3314. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := enat.has_coe
  3315. failed is_def_eq
  3316. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := nat.primes.coe_pnat
  3317. failed is_def_eq
  3318. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := coe_pnat_nat
  3319. failed is_def_eq
  3320. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := nat.primes.coe_nat
  3321. failed is_def_eq
  3322. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @pfun.has_coe ?x_280 ?x_281
  3323. failed is_def_eq
  3324. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @roption.has_coe ?x_282
  3325. failed is_def_eq
  3326. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @multiset.has_coe ?x_283
  3327. failed is_def_eq
  3328. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := fin.fin_to_nat ?x_284
  3329. failed is_def_eq
  3330. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @add_monoid_hom.has_coe ?x_285 ?x_286 ?x_287 ?x_288
  3331. failed is_def_eq
  3332. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @monoid_hom.has_coe ?x_289 ?x_290 ?x_291 ?x_292
  3333. failed is_def_eq
  3334. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @units.has_coe ?x_293 ?x_294
  3335. failed is_def_eq
  3336. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := int.has_coe
  3337. failed is_def_eq
  3338. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @list.bin_tree_to_list ?x_295
  3339. failed is_def_eq
  3340. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := smt_tactic.has_coe ?x_296
  3341. failed is_def_eq
  3342. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @lean.parser.has_coe ?x_297
  3343. failed is_def_eq
  3344. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @tactic.ex_to_tac ?x_298
  3345. failed is_def_eq
  3346. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @tactic.opt_to_tac ?x_299
  3347. failed is_def_eq
  3348. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @expr.has_coe ?x_300 ?x_301
  3349. failed is_def_eq
  3350. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := string_to_format
  3351. failed is_def_eq
  3352. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := nat_to_format
  3353. failed is_def_eq
  3354. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := string_to_name
  3355. failed is_def_eq
  3356. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @coe_subtype ?x_302 ?x_303
  3357. failed is_def_eq
  3358. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := coe_bool_to_Prop
  3359. failed is_def_eq
  3360. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @znum_coe ?x_304 ?x_305 ?x_306 ?x_307 ?x_308
  3361. failed is_def_eq
  3362. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @num_nat_coe ?x_309 ?x_310 ?x_311 ?x_312
  3363. failed is_def_eq
  3364. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @pos_num_coe ?x_313 ?x_314 ?x_315 ?x_316
  3365. failed is_def_eq
  3366. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @rat.cast_coe ?x_317 ?x_318
  3367. failed is_def_eq
  3368. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @int.cast_coe ?x_319 ?x_320 ?x_321 ?x_322 ?x_323
  3369. failed is_def_eq
  3370. [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @nat.cast_coe ?x_324 ?x_325 ?x_326 ?x_327
  3371. failed is_def_eq
  3372. [class_instances] (5) ?x_203 : comm_ring A := @subalgebra.comm_ring ?x_205 ?x_206 ?x_207 ?x_208 ?x_209 ?x_210
  3373. failed is_def_eq
  3374. [class_instances] (5) ?x_203 : comm_ring A := @algebra.comap.comm_ring ?x_211 ?x_212 ?x_213 ?x_214 ?x_215 ?x_216 ?x_217 ?x_218
  3375. failed is_def_eq
  3376. [class_instances] (5) ?x_203 : comm_ring A := @free_abelian_group.comm_ring ?x_219 ?x_220
  3377. failed is_def_eq
  3378. [class_instances] (5) ?x_203 : comm_ring A := complex.comm_ring
  3379. failed is_def_eq
  3380. [class_instances] (5) ?x_203 : comm_ring A := real.comm_ring
  3381. failed is_def_eq
  3382. [class_instances] (5) ?x_203 : comm_ring A := @cau_seq.completion.comm_ring ?x_221 ?x_222 ?x_223 ?x_224 ?x_225 ?x_226
  3383. failed is_def_eq
  3384. [class_instances] (5) ?x_203 : comm_ring A := @cau_seq.comm_ring ?x_227 ?x_228 ?x_229 ?x_230 ?x_231 ?x_232
  3385. failed is_def_eq
  3386. [class_instances] (5) ?x_203 : comm_ring A := @mv_polynomial.comm_ring ?x_233 ?x_234 ?x_235
  3387. failed is_def_eq
  3388. [class_instances] (5) ?x_203 : comm_ring A := @polynomial.comm_ring ?x_236 ?x_237
  3389. failed is_def_eq
  3390. [class_instances] (5) ?x_203 : comm_ring A := @local_ring.comm_ring ?x_238 ?x_239
  3391. [class_instances] (6) ?x_239 : local_ring A := @discrete_field.local_ring ?x_240 ?x_241
  3392. [class_instances] (7) ?x_241 : discrete_field A := complex.discrete_field
  3393. failed is_def_eq
  3394. [class_instances] (7) ?x_241 : discrete_field A := real.discrete_field
  3395. failed is_def_eq
  3396. [class_instances] (7) ?x_241 : discrete_field A := @local_ring.residue_field.discrete_field ?x_242 ?x_243
  3397. failed is_def_eq
  3398. [class_instances] (7) ?x_241 : discrete_field A := rat.discrete_field
  3399. failed is_def_eq
  3400. [class_instances] (7) ?x_241 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_244 ?x_245
  3401. [class_instances] (8) ?x_245 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3402. failed is_def_eq
  3403. [class_instances] (8) ?x_245 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3404. failed is_def_eq
  3405. [class_instances] (5) ?x_203 : comm_ring A := @ideal.quotient.comm_ring ?x_205 ?x_206 ?x_207
  3406. failed is_def_eq
  3407. [class_instances] (5) ?x_203 : comm_ring A := @prod.comm_ring ?x_208 ?x_209 ?x_210 ?x_211
  3408. failed is_def_eq
  3409. [class_instances] (5) ?x_203 : comm_ring A := @pi.comm_ring ?x_212 ?x_213 ?x_214
  3410. failed is_def_eq
  3411. [class_instances] (5) ?x_203 : comm_ring A := @subtype.comm_ring ?x_215 ?x_216 ?x_217 ?x_218
  3412. failed is_def_eq
  3413. [class_instances] (5) ?x_203 : comm_ring A := @subset.comm_ring ?x_219 ?x_220 ?x_221 ?x_222
  3414. failed is_def_eq
  3415. [class_instances] (5) ?x_203 : comm_ring A := @finsupp.comm_ring ?x_223 ?x_224 ?x_225 ?x_226
  3416. failed is_def_eq
  3417. [class_instances] (5) ?x_203 : comm_ring A := rat.comm_ring
  3418. failed is_def_eq
  3419. [class_instances] (5) ?x_203 : comm_ring A := @nonzero_comm_ring.to_comm_ring ?x_227 ?x_228
  3420. [class_instances] (6) ?x_228 : nonzero_comm_ring A := real.nonzero_comm_ring
  3421. failed is_def_eq
  3422. [class_instances] (6) ?x_228 : nonzero_comm_ring A := @polynomial.nonzero_comm_ring ?x_229 ?x_230
  3423. failed is_def_eq
  3424. [class_instances] (6) ?x_228 : nonzero_comm_ring A := @local_ring.to_nonzero_comm_ring ?x_231 ?x_232
  3425. [class_instances] (7) ?x_232 : local_ring A := @discrete_field.local_ring ?x_233 ?x_234
  3426. [class_instances] (8) ?x_234 : discrete_field A := complex.discrete_field
  3427. failed is_def_eq
  3428. [class_instances] (8) ?x_234 : discrete_field A := real.discrete_field
  3429. failed is_def_eq
  3430. [class_instances] (8) ?x_234 : discrete_field A := @local_ring.residue_field.discrete_field ?x_235 ?x_236
  3431. failed is_def_eq
  3432. [class_instances] (8) ?x_234 : discrete_field A := rat.discrete_field
  3433. failed is_def_eq
  3434. [class_instances] (8) ?x_234 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_237 ?x_238
  3435. [class_instances] (9) ?x_238 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3436. failed is_def_eq
  3437. [class_instances] (9) ?x_238 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3438. failed is_def_eq
  3439. [class_instances] (6) ?x_228 : nonzero_comm_ring A := @prod.nonzero_comm_ring ?x_229 ?x_230 ?x_231 ?x_232
  3440. failed is_def_eq
  3441. [class_instances] (6) ?x_228 : nonzero_comm_ring A := @euclidean_domain.to_nonzero_comm_ring ?x_233 ?x_234
  3442. [class_instances] (7) ?x_234 : euclidean_domain A := @polynomial.euclidean_domain ?x_235 ?x_236
  3443. failed is_def_eq
  3444. [class_instances] (7) ?x_234 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_237 ?x_238
  3445. [class_instances] (8) ?x_238 : discrete_field A := complex.discrete_field
  3446. failed is_def_eq
  3447. [class_instances] (8) ?x_238 : discrete_field A := real.discrete_field
  3448. failed is_def_eq
  3449. [class_instances] (8) ?x_238 : discrete_field A := @local_ring.residue_field.discrete_field ?x_239 ?x_240
  3450. failed is_def_eq
  3451. [class_instances] (8) ?x_238 : discrete_field A := rat.discrete_field
  3452. failed is_def_eq
  3453. [class_instances] (8) ?x_238 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_241 ?x_242
  3454. [class_instances] (9) ?x_242 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3455. failed is_def_eq
  3456. [class_instances] (9) ?x_242 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3457. failed is_def_eq
  3458. [class_instances] (7) ?x_234 : euclidean_domain A := int.euclidean_domain
  3459. failed is_def_eq
  3460. [class_instances] (6) ?x_228 : nonzero_comm_ring A := rat.nonzero_comm_ring
  3461. failed is_def_eq
  3462. [class_instances] (6) ?x_228 : nonzero_comm_ring A := @integral_domain.to_nonzero_comm_ring ?x_229 ?x_230
  3463. [class_instances] (7) ?x_230 : integral_domain A := real.integral_domain
  3464. failed is_def_eq
  3465. [class_instances] (7) ?x_230 : integral_domain A := @polynomial.integral_domain ?x_231 ?x_232
  3466. failed is_def_eq
  3467. [class_instances] (7) ?x_230 : integral_domain A := @ideal.quotient.integral_domain ?x_233 ?x_234 ?x_235 ?x_236
  3468. failed is_def_eq
  3469. [class_instances] (7) ?x_230 : integral_domain A := @subring.domain ?x_237 ?x_238 ?x_239 ?x_240
  3470. failed is_def_eq
  3471. [class_instances] (7) ?x_230 : integral_domain A := @euclidean_domain.integral_domain ?x_241 ?x_242
  3472. [class_instances] (8) ?x_242 : euclidean_domain A := @polynomial.euclidean_domain ?x_243 ?x_244
  3473. failed is_def_eq
  3474. [class_instances] (8) ?x_242 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_245 ?x_246
  3475. [class_instances] (9) ?x_246 : discrete_field A := complex.discrete_field
  3476. failed is_def_eq
  3477. [class_instances] (9) ?x_246 : discrete_field A := real.discrete_field
  3478. failed is_def_eq
  3479. [class_instances] (9) ?x_246 : discrete_field A := @local_ring.residue_field.discrete_field ?x_247 ?x_248
  3480. failed is_def_eq
  3481. [class_instances] (9) ?x_246 : discrete_field A := rat.discrete_field
  3482. failed is_def_eq
  3483. [class_instances] (9) ?x_246 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_249 ?x_250
  3484. [class_instances] (10) ?x_250 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3485. failed is_def_eq
  3486. [class_instances] (10) ?x_250 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3487. failed is_def_eq
  3488. [class_instances] (8) ?x_242 : euclidean_domain A := int.euclidean_domain
  3489. failed is_def_eq
  3490. [class_instances] (7) ?x_230 : integral_domain A := @normalization_domain.to_integral_domain ?x_231 ?x_232
  3491. [class_instances] (8) ?x_232 : normalization_domain A := @polynomial.normalization_domain ?x_233 ?x_234
  3492. failed is_def_eq
  3493. [class_instances] (8) ?x_232 : normalization_domain A := int.normalization_domain
  3494. failed is_def_eq
  3495. [class_instances] (8) ?x_232 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_235 ?x_236
  3496. [class_instances] (9) ?x_236 : gcd_domain A := int.gcd_domain
  3497. failed is_def_eq
  3498. [class_instances] (7) ?x_230 : integral_domain A := rat.integral_domain
  3499. failed is_def_eq
  3500. [class_instances] (7) ?x_230 : integral_domain A := @field.to_integral_domain ?x_231 ?x_232
  3501. [class_instances] (8) ?x_232 : field A := real.field
  3502. failed is_def_eq
  3503. [class_instances] (8) ?x_232 : field A := rat.field
  3504. failed is_def_eq
  3505. [class_instances] (8) ?x_232 : field A := @linear_ordered_field.to_field ?x_233 ?x_234
  3506. [class_instances] (9) ?x_234 : linear_ordered_field A := real.linear_ordered_field
  3507. failed is_def_eq
  3508. [class_instances] (9) ?x_234 : linear_ordered_field A := rat.linear_ordered_field
  3509. failed is_def_eq
  3510. [class_instances] (9) ?x_234 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_235 ?x_236
  3511. [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3512. failed is_def_eq
  3513. [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3514. failed is_def_eq
  3515. [class_instances] (8) ?x_232 : field A := @discrete_field.to_field ?x_233 ?x_234
  3516. [class_instances] (9) ?x_234 : discrete_field A := complex.discrete_field
  3517. failed is_def_eq
  3518. [class_instances] (9) ?x_234 : discrete_field A := real.discrete_field
  3519. failed is_def_eq
  3520. [class_instances] (9) ?x_234 : discrete_field A := @local_ring.residue_field.discrete_field ?x_235 ?x_236
  3521. failed is_def_eq
  3522. [class_instances] (9) ?x_234 : discrete_field A := rat.discrete_field
  3523. failed is_def_eq
  3524. [class_instances] (9) ?x_234 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_237 ?x_238
  3525. [class_instances] (10) ?x_238 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3526. failed is_def_eq
  3527. [class_instances] (10) ?x_238 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3528. failed is_def_eq
  3529. [class_instances] (7) ?x_230 : integral_domain A := @discrete_field.to_integral_domain ?x_231 ?x_232 ?x_233
  3530. [class_instances] (8) ?x_232 : discrete_field A := complex.discrete_field
  3531. failed is_def_eq
  3532. [class_instances] (8) ?x_232 : discrete_field A := real.discrete_field
  3533. failed is_def_eq
  3534. [class_instances] (8) ?x_232 : discrete_field A := @local_ring.residue_field.discrete_field ?x_234 ?x_235
  3535. failed is_def_eq
  3536. [class_instances] (8) ?x_232 : discrete_field A := rat.discrete_field
  3537. failed is_def_eq
  3538. [class_instances] (8) ?x_232 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_236 ?x_237
  3539. [class_instances] (9) ?x_237 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3540. failed is_def_eq
  3541. [class_instances] (9) ?x_237 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3542. failed is_def_eq
  3543. [class_instances] (7) ?x_230 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_231 ?x_232
  3544. [class_instances] (8) ?x_232 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  3545. failed is_def_eq
  3546. [class_instances] (8) ?x_232 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  3547. failed is_def_eq
  3548. [class_instances] (8) ?x_232 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_233 ?x_234
  3549. [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  3550. failed is_def_eq
  3551. [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  3552. failed is_def_eq
  3553. [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_235 ?x_236 ?x_237 ?x_238
  3554. [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  3555. failed is_def_eq
  3556. [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_235 ?x_236
  3557. [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3558. failed is_def_eq
  3559. [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3560. failed is_def_eq
  3561. [class_instances] (5) ?x_203 : comm_ring A := int.comm_ring
  3562. failed is_def_eq
  3563. [class_instances] (5) ?x_203 : comm_ring A := @field.to_comm_ring ?x_205 ?x_206
  3564. [class_instances] (6) ?x_206 : field A := real.field
  3565. failed is_def_eq
  3566. [class_instances] (6) ?x_206 : field A := rat.field
  3567. failed is_def_eq
  3568. [class_instances] (6) ?x_206 : field A := @linear_ordered_field.to_field ?x_207 ?x_208
  3569. [class_instances] (7) ?x_208 : linear_ordered_field A := real.linear_ordered_field
  3570. failed is_def_eq
  3571. [class_instances] (7) ?x_208 : linear_ordered_field A := rat.linear_ordered_field
  3572. failed is_def_eq
  3573. [class_instances] (7) ?x_208 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_209 ?x_210
  3574. [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3575. failed is_def_eq
  3576. [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3577. failed is_def_eq
  3578. [class_instances] (6) ?x_206 : field A := @discrete_field.to_field ?x_207 ?x_208
  3579. [class_instances] (7) ?x_208 : discrete_field A := complex.discrete_field
  3580. failed is_def_eq
  3581. [class_instances] (7) ?x_208 : discrete_field A := real.discrete_field
  3582. failed is_def_eq
  3583. [class_instances] (7) ?x_208 : discrete_field A := @local_ring.residue_field.discrete_field ?x_209 ?x_210
  3584. failed is_def_eq
  3585. [class_instances] (7) ?x_208 : discrete_field A := rat.discrete_field
  3586. failed is_def_eq
  3587. [class_instances] (7) ?x_208 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_211 ?x_212
  3588. [class_instances] (8) ?x_212 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3589. failed is_def_eq
  3590. [class_instances] (8) ?x_212 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3591. failed is_def_eq
  3592. [class_instances] (5) ?x_203 : comm_ring A := @integral_domain.to_comm_ring ?x_205 ?x_206
  3593. [class_instances] (6) ?x_206 : integral_domain A := real.integral_domain
  3594. failed is_def_eq
  3595. [class_instances] (6) ?x_206 : integral_domain A := @polynomial.integral_domain ?x_207 ?x_208
  3596. failed is_def_eq
  3597. [class_instances] (6) ?x_206 : integral_domain A := @ideal.quotient.integral_domain ?x_209 ?x_210 ?x_211 ?x_212
  3598. failed is_def_eq
  3599. [class_instances] (6) ?x_206 : integral_domain A := @subring.domain ?x_213 ?x_214 ?x_215 ?x_216
  3600. failed is_def_eq
  3601. [class_instances] (6) ?x_206 : integral_domain A := @euclidean_domain.integral_domain ?x_217 ?x_218
  3602. [class_instances] (7) ?x_218 : euclidean_domain A := @polynomial.euclidean_domain ?x_219 ?x_220
  3603. failed is_def_eq
  3604. [class_instances] (7) ?x_218 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_221 ?x_222
  3605. [class_instances] (8) ?x_222 : discrete_field A := complex.discrete_field
  3606. failed is_def_eq
  3607. [class_instances] (8) ?x_222 : discrete_field A := real.discrete_field
  3608. failed is_def_eq
  3609. [class_instances] (8) ?x_222 : discrete_field A := @local_ring.residue_field.discrete_field ?x_223 ?x_224
  3610. failed is_def_eq
  3611. [class_instances] (8) ?x_222 : discrete_field A := rat.discrete_field
  3612. failed is_def_eq
  3613. [class_instances] (8) ?x_222 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_225 ?x_226
  3614. [class_instances] (9) ?x_226 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3615. failed is_def_eq
  3616. [class_instances] (9) ?x_226 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3617. failed is_def_eq
  3618. [class_instances] (7) ?x_218 : euclidean_domain A := int.euclidean_domain
  3619. failed is_def_eq
  3620. [class_instances] (6) ?x_206 : integral_domain A := @normalization_domain.to_integral_domain ?x_207 ?x_208
  3621. [class_instances] (7) ?x_208 : normalization_domain A := @polynomial.normalization_domain ?x_209 ?x_210
  3622. failed is_def_eq
  3623. [class_instances] (7) ?x_208 : normalization_domain A := int.normalization_domain
  3624. failed is_def_eq
  3625. [class_instances] (7) ?x_208 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_211 ?x_212
  3626. [class_instances] (8) ?x_212 : gcd_domain A := int.gcd_domain
  3627. failed is_def_eq
  3628. [class_instances] (6) ?x_206 : integral_domain A := rat.integral_domain
  3629. failed is_def_eq
  3630. [class_instances] (6) ?x_206 : integral_domain A := @field.to_integral_domain ?x_207 ?x_208
  3631. [class_instances] (7) ?x_208 : field A := real.field
  3632. failed is_def_eq
  3633. [class_instances] (7) ?x_208 : field A := rat.field
  3634. failed is_def_eq
  3635. [class_instances] (7) ?x_208 : field A := @linear_ordered_field.to_field ?x_209 ?x_210
  3636. [class_instances] (8) ?x_210 : linear_ordered_field A := real.linear_ordered_field
  3637. failed is_def_eq
  3638. [class_instances] (8) ?x_210 : linear_ordered_field A := rat.linear_ordered_field
  3639. failed is_def_eq
  3640. [class_instances] (8) ?x_210 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_211 ?x_212
  3641. [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3642. failed is_def_eq
  3643. [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3644. failed is_def_eq
  3645. [class_instances] (7) ?x_208 : field A := @discrete_field.to_field ?x_209 ?x_210
  3646. [class_instances] (8) ?x_210 : discrete_field A := complex.discrete_field
  3647. failed is_def_eq
  3648. [class_instances] (8) ?x_210 : discrete_field A := real.discrete_field
  3649. failed is_def_eq
  3650. [class_instances] (8) ?x_210 : discrete_field A := @local_ring.residue_field.discrete_field ?x_211 ?x_212
  3651. failed is_def_eq
  3652. [class_instances] (8) ?x_210 : discrete_field A := rat.discrete_field
  3653. failed is_def_eq
  3654. [class_instances] (8) ?x_210 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_213 ?x_214
  3655. [class_instances] (9) ?x_214 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3656. failed is_def_eq
  3657. [class_instances] (9) ?x_214 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3658. failed is_def_eq
  3659. [class_instances] (6) ?x_206 : integral_domain A := @discrete_field.to_integral_domain ?x_207 ?x_208 ?x_209
  3660. [class_instances] (7) ?x_208 : discrete_field A := complex.discrete_field
  3661. failed is_def_eq
  3662. [class_instances] (7) ?x_208 : discrete_field A := real.discrete_field
  3663. failed is_def_eq
  3664. [class_instances] (7) ?x_208 : discrete_field A := @local_ring.residue_field.discrete_field ?x_210 ?x_211
  3665. failed is_def_eq
  3666. [class_instances] (7) ?x_208 : discrete_field A := rat.discrete_field
  3667. failed is_def_eq
  3668. [class_instances] (7) ?x_208 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_212 ?x_213
  3669. [class_instances] (8) ?x_213 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3670. failed is_def_eq
  3671. [class_instances] (8) ?x_213 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3672. failed is_def_eq
  3673. [class_instances] (6) ?x_206 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_207 ?x_208
  3674. [class_instances] (7) ?x_208 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  3675. failed is_def_eq
  3676. [class_instances] (7) ?x_208 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  3677. failed is_def_eq
  3678. [class_instances] (7) ?x_208 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_209 ?x_210
  3679. [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  3680. failed is_def_eq
  3681. [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  3682. failed is_def_eq
  3683. [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_211 ?x_212 ?x_213 ?x_214
  3684. [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  3685. failed is_def_eq
  3686. [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_211 ?x_212
  3687. [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3688. failed is_def_eq
  3689. [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3690. failed is_def_eq
  3691. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3692. (@comm_ring.to_ring A _inst_1) := @algebra.id ?x_202 ?x_203
  3693. failed is_def_eq
  3694. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3695. (@comm_ring.to_ring A _inst_1) := @subalgebra.to_algebra ?x_204 ?x_205 ?x_206 ?x_207 ?x_208 ?x_209
  3696. failed is_def_eq
  3697. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3698. (@comm_ring.to_ring A _inst_1) := @subalgebra.algebra ?x_210 ?x_211 ?x_212 ?x_213 ?x_214 ?x_215
  3699. failed is_def_eq
  3700. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3701. (@comm_ring.to_ring A _inst_1) := complex.algebra_over_reals
  3702. failed is_def_eq
  3703. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3704. (@comm_ring.to_ring A _inst_1) := @algebra.comap.algebra ?x_216 ?x_217 ?x_218 ?x_219 ?x_220 ?x_221 ?x_222 ?x_223
  3705. failed is_def_eq
  3706. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3707. (@comm_ring.to_ring A _inst_1) := @algebra.of_subring ?x_224 ?x_225 ?x_226 ?x_227
  3708. failed is_def_eq
  3709. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3710. (@comm_ring.to_ring A _inst_1) := @algebra.mv_polynomial ?x_228 ?x_229 ?x_230 ?x_231 ?x_232
  3711. failed is_def_eq
  3712. [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
  3713. (@comm_ring.to_ring A _inst_1) := @algebra.polynomial ?x_233 ?x_234 ?x_235
  3714. failed is_def_eq
  3715. [class_instances] (5) ?x_201 : comm_ring A := @subalgebra.comm_ring ?x_202 ?x_203 ?x_204 ?x_205 ?x_206 ?x_207
  3716. failed is_def_eq
  3717. [class_instances] (5) ?x_201 : comm_ring A := @algebra.comap.comm_ring ?x_208 ?x_209 ?x_210 ?x_211 ?x_212 ?x_213 ?x_214 ?x_215
  3718. failed is_def_eq
  3719. [class_instances] (5) ?x_201 : comm_ring A := @free_abelian_group.comm_ring ?x_216 ?x_217
  3720. failed is_def_eq
  3721. [class_instances] (5) ?x_201 : comm_ring A := complex.comm_ring
  3722. failed is_def_eq
  3723. [class_instances] (5) ?x_201 : comm_ring A := real.comm_ring
  3724. failed is_def_eq
  3725. [class_instances] (5) ?x_201 : comm_ring A := @cau_seq.completion.comm_ring ?x_218 ?x_219 ?x_220 ?x_221 ?x_222 ?x_223
  3726. failed is_def_eq
  3727. [class_instances] (5) ?x_201 : comm_ring A := @cau_seq.comm_ring ?x_224 ?x_225 ?x_226 ?x_227 ?x_228 ?x_229
  3728. failed is_def_eq
  3729. [class_instances] (5) ?x_201 : comm_ring A := @mv_polynomial.comm_ring ?x_230 ?x_231 ?x_232
  3730. failed is_def_eq
  3731. [class_instances] (5) ?x_201 : comm_ring A := @polynomial.comm_ring ?x_233 ?x_234
  3732. failed is_def_eq
  3733. [class_instances] (5) ?x_201 : comm_ring A := @local_ring.comm_ring ?x_235 ?x_236
  3734. [class_instances] (6) ?x_236 : local_ring A := @discrete_field.local_ring ?x_237 ?x_238
  3735. [class_instances] (7) ?x_238 : discrete_field A := complex.discrete_field
  3736. failed is_def_eq
  3737. [class_instances] (7) ?x_238 : discrete_field A := real.discrete_field
  3738. failed is_def_eq
  3739. [class_instances] (7) ?x_238 : discrete_field A := @local_ring.residue_field.discrete_field ?x_239 ?x_240
  3740. failed is_def_eq
  3741. [class_instances] (7) ?x_238 : discrete_field A := rat.discrete_field
  3742. failed is_def_eq
  3743. [class_instances] (7) ?x_238 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_241 ?x_242
  3744. [class_instances] (8) ?x_242 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3745. failed is_def_eq
  3746. [class_instances] (8) ?x_242 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3747. failed is_def_eq
  3748. [class_instances] (5) ?x_201 : comm_ring A := @ideal.quotient.comm_ring ?x_202 ?x_203 ?x_204
  3749. failed is_def_eq
  3750. [class_instances] (5) ?x_201 : comm_ring A := @prod.comm_ring ?x_205 ?x_206 ?x_207 ?x_208
  3751. failed is_def_eq
  3752. [class_instances] (5) ?x_201 : comm_ring A := @pi.comm_ring ?x_209 ?x_210 ?x_211
  3753. failed is_def_eq
  3754. [class_instances] (5) ?x_201 : comm_ring A := @subtype.comm_ring ?x_212 ?x_213 ?x_214 ?x_215
  3755. failed is_def_eq
  3756. [class_instances] (5) ?x_201 : comm_ring A := @subset.comm_ring ?x_216 ?x_217 ?x_218 ?x_219
  3757. failed is_def_eq
  3758. [class_instances] (5) ?x_201 : comm_ring A := @finsupp.comm_ring ?x_220 ?x_221 ?x_222 ?x_223
  3759. failed is_def_eq
  3760. [class_instances] (5) ?x_201 : comm_ring A := rat.comm_ring
  3761. failed is_def_eq
  3762. [class_instances] (5) ?x_201 : comm_ring A := @nonzero_comm_ring.to_comm_ring ?x_224 ?x_225
  3763. [class_instances] (6) ?x_225 : nonzero_comm_ring A := real.nonzero_comm_ring
  3764. failed is_def_eq
  3765. [class_instances] (6) ?x_225 : nonzero_comm_ring A := @polynomial.nonzero_comm_ring ?x_226 ?x_227
  3766. failed is_def_eq
  3767. [class_instances] (6) ?x_225 : nonzero_comm_ring A := @local_ring.to_nonzero_comm_ring ?x_228 ?x_229
  3768. [class_instances] (7) ?x_229 : local_ring A := @discrete_field.local_ring ?x_230 ?x_231
  3769. [class_instances] (8) ?x_231 : discrete_field A := complex.discrete_field
  3770. failed is_def_eq
  3771. [class_instances] (8) ?x_231 : discrete_field A := real.discrete_field
  3772. failed is_def_eq
  3773. [class_instances] (8) ?x_231 : discrete_field A := @local_ring.residue_field.discrete_field ?x_232 ?x_233
  3774. failed is_def_eq
  3775. [class_instances] (8) ?x_231 : discrete_field A := rat.discrete_field
  3776. failed is_def_eq
  3777. [class_instances] (8) ?x_231 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_234 ?x_235
  3778. [class_instances] (9) ?x_235 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3779. failed is_def_eq
  3780. [class_instances] (9) ?x_235 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3781. failed is_def_eq
  3782. [class_instances] (6) ?x_225 : nonzero_comm_ring A := @prod.nonzero_comm_ring ?x_226 ?x_227 ?x_228 ?x_229
  3783. failed is_def_eq
  3784. [class_instances] (6) ?x_225 : nonzero_comm_ring A := @euclidean_domain.to_nonzero_comm_ring ?x_230 ?x_231
  3785. [class_instances] (7) ?x_231 : euclidean_domain A := @polynomial.euclidean_domain ?x_232 ?x_233
  3786. failed is_def_eq
  3787. [class_instances] (7) ?x_231 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_234 ?x_235
  3788. [class_instances] (8) ?x_235 : discrete_field A := complex.discrete_field
  3789. failed is_def_eq
  3790. [class_instances] (8) ?x_235 : discrete_field A := real.discrete_field
  3791. failed is_def_eq
  3792. [class_instances] (8) ?x_235 : discrete_field A := @local_ring.residue_field.discrete_field ?x_236 ?x_237
  3793. failed is_def_eq
  3794. [class_instances] (8) ?x_235 : discrete_field A := rat.discrete_field
  3795. failed is_def_eq
  3796. [class_instances] (8) ?x_235 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_238 ?x_239
  3797. [class_instances] (9) ?x_239 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3798. failed is_def_eq
  3799. [class_instances] (9) ?x_239 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3800. failed is_def_eq
  3801. [class_instances] (7) ?x_231 : euclidean_domain A := int.euclidean_domain
  3802. failed is_def_eq
  3803. [class_instances] (6) ?x_225 : nonzero_comm_ring A := rat.nonzero_comm_ring
  3804. failed is_def_eq
  3805. [class_instances] (6) ?x_225 : nonzero_comm_ring A := @integral_domain.to_nonzero_comm_ring ?x_226 ?x_227
  3806. [class_instances] (7) ?x_227 : integral_domain A := real.integral_domain
  3807. failed is_def_eq
  3808. [class_instances] (7) ?x_227 : integral_domain A := @polynomial.integral_domain ?x_228 ?x_229
  3809. failed is_def_eq
  3810. [class_instances] (7) ?x_227 : integral_domain A := @ideal.quotient.integral_domain ?x_230 ?x_231 ?x_232 ?x_233
  3811. failed is_def_eq
  3812. [class_instances] (7) ?x_227 : integral_domain A := @subring.domain ?x_234 ?x_235 ?x_236 ?x_237
  3813. failed is_def_eq
  3814. [class_instances] (7) ?x_227 : integral_domain A := @euclidean_domain.integral_domain ?x_238 ?x_239
  3815. [class_instances] (8) ?x_239 : euclidean_domain A := @polynomial.euclidean_domain ?x_240 ?x_241
  3816. failed is_def_eq
  3817. [class_instances] (8) ?x_239 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_242 ?x_243
  3818. [class_instances] (9) ?x_243 : discrete_field A := complex.discrete_field
  3819. failed is_def_eq
  3820. [class_instances] (9) ?x_243 : discrete_field A := real.discrete_field
  3821. failed is_def_eq
  3822. [class_instances] (9) ?x_243 : discrete_field A := @local_ring.residue_field.discrete_field ?x_244 ?x_245
  3823. failed is_def_eq
  3824. [class_instances] (9) ?x_243 : discrete_field A := rat.discrete_field
  3825. failed is_def_eq
  3826. [class_instances] (9) ?x_243 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_246 ?x_247
  3827. [class_instances] (10) ?x_247 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3828. failed is_def_eq
  3829. [class_instances] (10) ?x_247 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3830. failed is_def_eq
  3831. [class_instances] (8) ?x_239 : euclidean_domain A := int.euclidean_domain
  3832. failed is_def_eq
  3833. [class_instances] (7) ?x_227 : integral_domain A := @normalization_domain.to_integral_domain ?x_228 ?x_229
  3834. [class_instances] (8) ?x_229 : normalization_domain A := @polynomial.normalization_domain ?x_230 ?x_231
  3835. failed is_def_eq
  3836. [class_instances] (8) ?x_229 : normalization_domain A := int.normalization_domain
  3837. failed is_def_eq
  3838. [class_instances] (8) ?x_229 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_232 ?x_233
  3839. [class_instances] (9) ?x_233 : gcd_domain A := int.gcd_domain
  3840. failed is_def_eq
  3841. [class_instances] (7) ?x_227 : integral_domain A := rat.integral_domain
  3842. failed is_def_eq
  3843. [class_instances] (7) ?x_227 : integral_domain A := @field.to_integral_domain ?x_228 ?x_229
  3844. [class_instances] (8) ?x_229 : field A := real.field
  3845. failed is_def_eq
  3846. [class_instances] (8) ?x_229 : field A := rat.field
  3847. failed is_def_eq
  3848. [class_instances] (8) ?x_229 : field A := @linear_ordered_field.to_field ?x_230 ?x_231
  3849. [class_instances] (9) ?x_231 : linear_ordered_field A := real.linear_ordered_field
  3850. failed is_def_eq
  3851. [class_instances] (9) ?x_231 : linear_ordered_field A := rat.linear_ordered_field
  3852. failed is_def_eq
  3853. [class_instances] (9) ?x_231 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_232 ?x_233
  3854. [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3855. failed is_def_eq
  3856. [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3857. failed is_def_eq
  3858. [class_instances] (8) ?x_229 : field A := @discrete_field.to_field ?x_230 ?x_231
  3859. [class_instances] (9) ?x_231 : discrete_field A := complex.discrete_field
  3860. failed is_def_eq
  3861. [class_instances] (9) ?x_231 : discrete_field A := real.discrete_field
  3862. failed is_def_eq
  3863. [class_instances] (9) ?x_231 : discrete_field A := @local_ring.residue_field.discrete_field ?x_232 ?x_233
  3864. failed is_def_eq
  3865. [class_instances] (9) ?x_231 : discrete_field A := rat.discrete_field
  3866. failed is_def_eq
  3867. [class_instances] (9) ?x_231 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_234 ?x_235
  3868. [class_instances] (10) ?x_235 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3869. failed is_def_eq
  3870. [class_instances] (10) ?x_235 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3871. failed is_def_eq
  3872. [class_instances] (7) ?x_227 : integral_domain A := @discrete_field.to_integral_domain ?x_228 ?x_229 ?x_230
  3873. [class_instances] (8) ?x_229 : discrete_field A := complex.discrete_field
  3874. failed is_def_eq
  3875. [class_instances] (8) ?x_229 : discrete_field A := real.discrete_field
  3876. failed is_def_eq
  3877. [class_instances] (8) ?x_229 : discrete_field A := @local_ring.residue_field.discrete_field ?x_231 ?x_232
  3878. failed is_def_eq
  3879. [class_instances] (8) ?x_229 : discrete_field A := rat.discrete_field
  3880. failed is_def_eq
  3881. [class_instances] (8) ?x_229 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_233 ?x_234
  3882. [class_instances] (9) ?x_234 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3883. failed is_def_eq
  3884. [class_instances] (9) ?x_234 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3885. failed is_def_eq
  3886. [class_instances] (7) ?x_227 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_228 ?x_229
  3887. [class_instances] (8) ?x_229 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  3888. failed is_def_eq
  3889. [class_instances] (8) ?x_229 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  3890. failed is_def_eq
  3891. [class_instances] (8) ?x_229 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_230 ?x_231
  3892. [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  3893. failed is_def_eq
  3894. [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  3895. failed is_def_eq
  3896. [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_232 ?x_233 ?x_234 ?x_235
  3897. [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  3898. failed is_def_eq
  3899. [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_232 ?x_233
  3900. [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3901. failed is_def_eq
  3902. [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3903. failed is_def_eq
  3904. [class_instances] (5) ?x_201 : comm_ring A := int.comm_ring
  3905. failed is_def_eq
  3906. [class_instances] (5) ?x_201 : comm_ring A := @field.to_comm_ring ?x_202 ?x_203
  3907. [class_instances] (6) ?x_203 : field A := real.field
  3908. failed is_def_eq
  3909. [class_instances] (6) ?x_203 : field A := rat.field
  3910. failed is_def_eq
  3911. [class_instances] (6) ?x_203 : field A := @linear_ordered_field.to_field ?x_204 ?x_205
  3912. [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
  3913. failed is_def_eq
  3914. [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
  3915. failed is_def_eq
  3916. [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
  3917. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3918. failed is_def_eq
  3919. [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3920. failed is_def_eq
  3921. [class_instances] (6) ?x_203 : field A := @discrete_field.to_field ?x_204 ?x_205
  3922. [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
  3923. failed is_def_eq
  3924. [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
  3925. failed is_def_eq
  3926. [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_206 ?x_207
  3927. failed is_def_eq
  3928. [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
  3929. failed is_def_eq
  3930. [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_208 ?x_209
  3931. [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3932. failed is_def_eq
  3933. [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3934. failed is_def_eq
  3935. [class_instances] (5) ?x_201 : comm_ring A := @integral_domain.to_comm_ring ?x_202 ?x_203
  3936. [class_instances] (6) ?x_203 : integral_domain A := real.integral_domain
  3937. failed is_def_eq
  3938. [class_instances] (6) ?x_203 : integral_domain A := @polynomial.integral_domain ?x_204 ?x_205
  3939. failed is_def_eq
  3940. [class_instances] (6) ?x_203 : integral_domain A := @ideal.quotient.integral_domain ?x_206 ?x_207 ?x_208 ?x_209
  3941. failed is_def_eq
  3942. [class_instances] (6) ?x_203 : integral_domain A := @subring.domain ?x_210 ?x_211 ?x_212 ?x_213
  3943. failed is_def_eq
  3944. [class_instances] (6) ?x_203 : integral_domain A := @euclidean_domain.integral_domain ?x_214 ?x_215
  3945. [class_instances] (7) ?x_215 : euclidean_domain A := @polynomial.euclidean_domain ?x_216 ?x_217
  3946. failed is_def_eq
  3947. [class_instances] (7) ?x_215 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_218 ?x_219
  3948. [class_instances] (8) ?x_219 : discrete_field A := complex.discrete_field
  3949. failed is_def_eq
  3950. [class_instances] (8) ?x_219 : discrete_field A := real.discrete_field
  3951. failed is_def_eq
  3952. [class_instances] (8) ?x_219 : discrete_field A := @local_ring.residue_field.discrete_field ?x_220 ?x_221
  3953. failed is_def_eq
  3954. [class_instances] (8) ?x_219 : discrete_field A := rat.discrete_field
  3955. failed is_def_eq
  3956. [class_instances] (8) ?x_219 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_222 ?x_223
  3957. [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3958. failed is_def_eq
  3959. [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3960. failed is_def_eq
  3961. [class_instances] (7) ?x_215 : euclidean_domain A := int.euclidean_domain
  3962. failed is_def_eq
  3963. [class_instances] (6) ?x_203 : integral_domain A := @normalization_domain.to_integral_domain ?x_204 ?x_205
  3964. [class_instances] (7) ?x_205 : normalization_domain A := @polynomial.normalization_domain ?x_206 ?x_207
  3965. failed is_def_eq
  3966. [class_instances] (7) ?x_205 : normalization_domain A := int.normalization_domain
  3967. failed is_def_eq
  3968. [class_instances] (7) ?x_205 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_208 ?x_209
  3969. [class_instances] (8) ?x_209 : gcd_domain A := int.gcd_domain
  3970. failed is_def_eq
  3971. [class_instances] (6) ?x_203 : integral_domain A := rat.integral_domain
  3972. failed is_def_eq
  3973. [class_instances] (6) ?x_203 : integral_domain A := @field.to_integral_domain ?x_204 ?x_205
  3974. [class_instances] (7) ?x_205 : field A := real.field
  3975. failed is_def_eq
  3976. [class_instances] (7) ?x_205 : field A := rat.field
  3977. failed is_def_eq
  3978. [class_instances] (7) ?x_205 : field A := @linear_ordered_field.to_field ?x_206 ?x_207
  3979. [class_instances] (8) ?x_207 : linear_ordered_field A := real.linear_ordered_field
  3980. failed is_def_eq
  3981. [class_instances] (8) ?x_207 : linear_ordered_field A := rat.linear_ordered_field
  3982. failed is_def_eq
  3983. [class_instances] (8) ?x_207 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_208 ?x_209
  3984. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3985. failed is_def_eq
  3986. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  3987. failed is_def_eq
  3988. [class_instances] (7) ?x_205 : field A := @discrete_field.to_field ?x_206 ?x_207
  3989. [class_instances] (8) ?x_207 : discrete_field A := complex.discrete_field
  3990. failed is_def_eq
  3991. [class_instances] (8) ?x_207 : discrete_field A := real.discrete_field
  3992. failed is_def_eq
  3993. [class_instances] (8) ?x_207 : discrete_field A := @local_ring.residue_field.discrete_field ?x_208 ?x_209
  3994. failed is_def_eq
  3995. [class_instances] (8) ?x_207 : discrete_field A := rat.discrete_field
  3996. failed is_def_eq
  3997. [class_instances] (8) ?x_207 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_210 ?x_211
  3998. [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  3999. failed is_def_eq
  4000. [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4001. failed is_def_eq
  4002. [class_instances] (6) ?x_203 : integral_domain A := @discrete_field.to_integral_domain ?x_204 ?x_205 ?x_206
  4003. [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
  4004. failed is_def_eq
  4005. [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
  4006. failed is_def_eq
  4007. [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_207 ?x_208
  4008. failed is_def_eq
  4009. [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
  4010. failed is_def_eq
  4011. [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_209 ?x_210
  4012. [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4013. failed is_def_eq
  4014. [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4015. failed is_def_eq
  4016. [class_instances] (6) ?x_203 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_204 ?x_205
  4017. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  4018. failed is_def_eq
  4019. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  4020. failed is_def_eq
  4021. [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
  4022. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  4023. failed is_def_eq
  4024. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  4025. failed is_def_eq
  4026. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
  4027. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  4028. failed is_def_eq
  4029. [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
  4030. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4031. failed is_def_eq
  4032. [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4033. failed is_def_eq
  4034. [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := rat.nonzero_comm_ring
  4035. failed is_def_eq
  4036. [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @integral_domain.to_nonzero_comm_ring ?x_194 ?x_195
  4037. [class_instances] (6) ?x_195 : integral_domain ℤ := real.integral_domain
  4038. failed is_def_eq
  4039. [class_instances] (6) ?x_195 : integral_domain ℤ := @polynomial.integral_domain ?x_196 ?x_197
  4040. failed is_def_eq
  4041. [class_instances] (6) ?x_195 : integral_domain ℤ := @ideal.quotient.integral_domain ?x_198 ?x_199 ?x_200 ?x_201
  4042. failed is_def_eq
  4043. [class_instances] (6) ?x_195 : integral_domain ℤ := @subring.domain ?x_202 ?x_203 ?x_204 ?x_205
  4044. failed is_def_eq
  4045. [class_instances] (6) ?x_195 : integral_domain ℤ := @euclidean_domain.integral_domain ?x_206 ?x_207
  4046. [class_instances] (7) ?x_207 : euclidean_domain ℤ := @polynomial.euclidean_domain ?x_208 ?x_209
  4047. failed is_def_eq
  4048. [class_instances] (7) ?x_207 : euclidean_domain ℤ := @discrete_field.to_euclidean_domain ?x_210 ?x_211
  4049. [class_instances] (8) ?x_211 : discrete_field ℤ := complex.discrete_field
  4050. failed is_def_eq
  4051. [class_instances] (8) ?x_211 : discrete_field ℤ := real.discrete_field
  4052. failed is_def_eq
  4053. [class_instances] (8) ?x_211 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_212 ?x_213
  4054. failed is_def_eq
  4055. [class_instances] (8) ?x_211 : discrete_field ℤ := rat.discrete_field
  4056. failed is_def_eq
  4057. [class_instances] (8) ?x_211 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_214 ?x_215
  4058. [class_instances] (9) ?x_215 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
  4059. failed is_def_eq
  4060. [class_instances] (9) ?x_215 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
  4061. failed is_def_eq
  4062. [class_instances] (7) ?x_207 : euclidean_domain ℤ := int.euclidean_domain
  4063. [class_instances] (4) ?x_134 : ring A := @subalgebra.ring ?x_208 ?x_209 ?x_210 ?x_211 ?x_212 ?x_213
  4064. failed is_def_eq
  4065. [class_instances] (4) ?x_134 : ring A := @algebra.comap.ring ?x_214 ?x_215 ?x_216 ?x_217 ?x_218 ?x_219 ?x_220 ?x_221
  4066. failed is_def_eq
  4067. [class_instances] (4) ?x_134 : ring A := @free_abelian_group.ring ?x_222 ?x_223
  4068. failed is_def_eq
  4069. [class_instances] (4) ?x_134 : ring A := real.ring
  4070. failed is_def_eq
  4071. [class_instances] (4) ?x_134 : ring A := @cau_seq.ring ?x_224 ?x_225 ?x_226 ?x_227 ?x_228 ?x_229
  4072. failed is_def_eq
  4073. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring2 ?x_230 ?x_231 ?x_232
  4074. failed is_def_eq
  4075. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring ?x_233 ?x_234 ?x_235
  4076. failed is_def_eq
  4077. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.option_ring ?x_236 ?x_237 ?x_238
  4078. failed is_def_eq
  4079. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_iter ?x_239 ?x_240 ?x_241 ?x_242
  4080. failed is_def_eq
  4081. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_sum ?x_243 ?x_244 ?x_245 ?x_246
  4082. failed is_def_eq
  4083. [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring ?x_247 ?x_248 ?x_249
  4084. failed is_def_eq
  4085. [class_instances] (4) ?x_134 : ring A := @linear_map.endomorphism_ring ?x_250 ?x_251 ?x_252 ?x_253 ?x_254
  4086. failed is_def_eq
  4087. [class_instances] (4) ?x_134 : ring A := @prod.ring ?x_255 ?x_256 ?x_257 ?x_258
  4088. failed is_def_eq
  4089. [class_instances] (4) ?x_134 : ring A := @pi.ring ?x_259 ?x_260 ?x_261
  4090. failed is_def_eq
  4091. [class_instances] (4) ?x_134 : ring A := @subtype.ring ?x_262 ?x_263 ?x_264 ?x_265
  4092. failed is_def_eq
  4093. [class_instances] (4) ?x_134 : ring A := @subset.ring ?x_266 ?x_267 ?x_268 ?x_269
  4094. failed is_def_eq
  4095. [class_instances] (4) ?x_134 : ring A := @finsupp.ring ?x_270 ?x_271 ?x_272 ?x_273
  4096. failed is_def_eq
  4097. [class_instances] (4) ?x_134 : ring A := @nonneg_ring.to_ring ?x_274 ?x_275
  4098. [class_instances] (5) ?x_275 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_276 ?x_277
  4099. [class_instances] (4) ?x_134 : ring A := @domain.to_ring ?x_208 ?x_209
  4100. [class_instances] (5) ?x_209 : domain A := real.domain
  4101. failed is_def_eq
  4102. [class_instances] (5) ?x_209 : domain A := @division_ring.to_domain ?x_210 ?x_211
  4103. [class_instances] (6) ?x_211 : division_ring A := real.division_ring
  4104. failed is_def_eq
  4105. [class_instances] (6) ?x_211 : division_ring A := rat.division_ring
  4106. failed is_def_eq
  4107. [class_instances] (6) ?x_211 : division_ring A := @field.to_division_ring ?x_212 ?x_213
  4108. [class_instances] (7) ?x_213 : field A := real.field
  4109. failed is_def_eq
  4110. [class_instances] (7) ?x_213 : field A := rat.field
  4111. failed is_def_eq
  4112. [class_instances] (7) ?x_213 : field A := @linear_ordered_field.to_field ?x_214 ?x_215
  4113. [class_instances] (8) ?x_215 : linear_ordered_field A := real.linear_ordered_field
  4114. failed is_def_eq
  4115. [class_instances] (8) ?x_215 : linear_ordered_field A := rat.linear_ordered_field
  4116. failed is_def_eq
  4117. [class_instances] (8) ?x_215 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_216 ?x_217
  4118. [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4119. failed is_def_eq
  4120. [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4121. failed is_def_eq
  4122. [class_instances] (7) ?x_213 : field A := @discrete_field.to_field ?x_214 ?x_215
  4123. [class_instances] (8) ?x_215 : discrete_field A := complex.discrete_field
  4124. failed is_def_eq
  4125. [class_instances] (8) ?x_215 : discrete_field A := real.discrete_field
  4126. failed is_def_eq
  4127. [class_instances] (8) ?x_215 : discrete_field A := @local_ring.residue_field.discrete_field ?x_216 ?x_217
  4128. failed is_def_eq
  4129. [class_instances] (8) ?x_215 : discrete_field A := rat.discrete_field
  4130. failed is_def_eq
  4131. [class_instances] (8) ?x_215 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_218 ?x_219
  4132. [class_instances] (9) ?x_219 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4133. failed is_def_eq
  4134. [class_instances] (9) ?x_219 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4135. failed is_def_eq
  4136. [class_instances] (5) ?x_209 : domain A := @linear_nonneg_ring.to_domain ?x_210 ?x_211
  4137. [class_instances] (5) ?x_209 : domain A := @to_domain ?x_210 ?x_211
  4138. [class_instances] (6) ?x_211 : linear_ordered_ring A := real.linear_ordered_ring
  4139. failed is_def_eq
  4140. [class_instances] (6) ?x_211 : linear_ordered_ring A := rat.linear_ordered_ring
  4141. failed is_def_eq
  4142. [class_instances] (6) ?x_211 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_212 ?x_213
  4143. [class_instances] (6) ?x_211 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_212 ?x_213
  4144. [class_instances] (7) ?x_213 : linear_ordered_field A := real.linear_ordered_field
  4145. failed is_def_eq
  4146. [class_instances] (7) ?x_213 : linear_ordered_field A := rat.linear_ordered_field
  4147. failed is_def_eq
  4148. [class_instances] (7) ?x_213 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_214 ?x_215
  4149. [class_instances] (8) ?x_215 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4150. failed is_def_eq
  4151. [class_instances] (8) ?x_215 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4152. failed is_def_eq
  4153. [class_instances] (6) ?x_211 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_212 ?x_213
  4154. [class_instances] (7) ?x_213 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
  4155. failed is_def_eq
  4156. [class_instances] (7) ?x_213 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
  4157. failed is_def_eq
  4158. [class_instances] (7) ?x_213 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_214 ?x_215
  4159. [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
  4160. failed is_def_eq
  4161. [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
  4162. failed is_def_eq
  4163. [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_216 ?x_217 ?x_218 ?x_219
  4164. [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
  4165. failed is_def_eq
  4166. [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_216 ?x_217
  4167. [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4168. failed is_def_eq
  4169. [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4170. failed is_def_eq
  4171. [class_instances] (5) ?x_209 : domain A := @integral_domain.to_domain ?x_210 ?x_211
  4172. [class_instances] (6) ?x_211 : integral_domain A := real.integral_domain
  4173. failed is_def_eq
  4174. [class_instances] (6) ?x_211 : integral_domain A := @polynomial.integral_domain ?x_212 ?x_213
  4175. failed is_def_eq
  4176. [class_instances] (6) ?x_211 : integral_domain A := @ideal.quotient.integral_domain ?x_214 ?x_215 ?x_216 ?x_217
  4177. failed is_def_eq
  4178. [class_instances] (6) ?x_211 : integral_domain A := @subring.domain ?x_218 ?x_219 ?x_220 ?x_221
  4179. failed is_def_eq
  4180. [class_instances] (6) ?x_211 : integral_domain A := @euclidean_domain.integral_domain ?x_222 ?x_223
  4181. [class_instances] (7) ?x_223 : euclidean_domain A := @polynomial.euclidean_domain ?x_224 ?x_225
  4182. failed is_def_eq
  4183. [class_instances] (7) ?x_223 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_226 ?x_227
  4184. [class_instances] (8) ?x_227 : discrete_field A := complex.discrete_field
  4185. failed is_def_eq
  4186. [class_instances] (8) ?x_227 : discrete_field A := real.discrete_field
  4187. failed is_def_eq
  4188. [class_instances] (8) ?x_227 : discrete_field A := @local_ring.residue_field.discrete_field ?x_228 ?x_229
  4189. failed is_def_eq
  4190. [class_instances] (8) ?x_227 : discrete_field A := rat.discrete_field
  4191. failed is_def_eq
  4192. [class_instances] (8) ?x_227 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_230 ?x_231
  4193. [class_instances] (9) ?x_231 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4194. failed is_def_eq
  4195. [class_instances] (9) ?x_231 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4196. failed is_def_eq
  4197. [class_instances] (7) ?x_223 : euclidean_domain A := int.euclidean_domain
  4198. failed is_def_eq
  4199. [class_instances] (6) ?x_211 : integral_domain A := @normalization_domain.to_integral_domain ?x_212 ?x_213
  4200. [class_instances] (7) ?x_213 : normalization_domain A := @polynomial.normalization_domain ?x_214 ?x_215
  4201. failed is_def_eq
  4202. [class_instances] (7) ?x_213 : normalization_domain A := int.normalization_domain
  4203. failed is_def_eq
  4204. [class_instances] (7) ?x_213 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_216 ?x_217
  4205. [class_instances] (8) ?x_217 : gcd_domain A := int.gcd_domain
  4206. failed is_def_eq
  4207. [class_instances] (6) ?x_211 : integral_domain A := rat.integral_domain
  4208. failed is_def_eq
  4209. [class_instances] (6) ?x_211 : integral_domain A := @field.to_integral_domain ?x_212 ?x_213
  4210. [class_instances] (7) ?x_213 : field A := real.field
  4211. failed is_def_eq
  4212. [class_instances] (7) ?x_213 : field A := rat.field
  4213. failed is_def_eq
  4214. [class_instances] (7) ?x_213 : field A := @linear_ordered_field.to_field ?x_214 ?x_215
  4215. [class_instances] (8) ?x_215 : linear_ordered_field A := real.linear_ordered_field
  4216. failed is_def_eq
  4217. [class_instances] (8) ?x_215 : linear_ordered_field A := rat.linear_ordered_field
  4218. failed is_def_eq
  4219. [class_instances] (8) ?x_215 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_216 ?x_217
  4220. [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
  4221. failed is_def_eq
  4222. [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
  4223. failed is_def_eq
  4224. [class_instances] (7) ?x_213 : field A := @discrete_field.to_field ?x_214 ?x_215
  4225. [class_instances] (8) ?x_215 : discrete_field A := complex.discrete_field
  4226. failed is_def_eq
  4227. [class_instances] (8) ?x_215 : discrete_field A := real.discrete_field
  4228. failed is_def_eq
  4229. [class_instances] (8) ?x_215 : discrete_field A := @local_ring.residue_field.discrete_field ?x_216 ?x_217
  4230. failed is_def_eq
  4231. [class_instances] (8) ?x_215 : discrete_field A := rat.discrete_field
  4232. failed is_def_eq
  4233. [class_instances] (8)
  4234. (message too long, truncated at 262144 characters)
  4235. scratch.lean:9:0: error
  4236. (deterministic) timeout
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement