Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (deterministic) timeout
- scratch.lean:9:0: information trace output
- [class_instances] class-instance resolution trace
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @alg_hom.has_coe_to_fun ?x_4 ?x_5 ?x_6 ?x_7 ?x_8 ?x_9 ?x_10 ?x_11
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @direct_sum.has_coe_to_fun ?x_12 ?x_13 ?x_14 ?x_15
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @dfinsupp.has_coe_to_fun ?x_16 ?x_17 ?x_18
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @cau_seq.has_coe_to_fun ?x_19 ?x_20 ?x_21 ?x_22 ?x_23
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @order_embedding.has_coe_to_fun ?x_24 ?x_25 ?x_26 ?x_27
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @add_equiv.has_coe_to_fun ?x_28 ?x_29 ?x_30 ?x_31
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @mul_equiv.has_coe_to_fun ?x_32 ?x_33 ?x_34 ?x_35
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @finsupp.has_coe_to_fun ?x_36 ?x_37 ?x_38
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @linear_map.has_coe_to_fun ?x_39 ?x_40 ?x_41 ?x_42 ?x_43 ?x_44 ?x_45 ?x_46
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @ring_hom.has_coe_to_fun ?x_47 ?x_48 ?x_49 ?x_50
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @add_monoid_hom.has_coe_to_fun ?x_51 ?x_52 ?x_53 ?x_54
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @monoid_hom.has_coe_to_fun ?x_55 ?x_56 ?x_57 ?x_58
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @function.has_coe_to_fun ?x_59 ?x_60
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @equiv.has_coe_to_fun ?x_61 ?x_62
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @applicative_transformation.has_coe_to_fun ?x_63 ?x_64 ?x_65 ?x_66 ?x_67 ?x_68
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @expr.has_coe_to_fun ?x_69
- failed is_def_eq
- [class_instances] (0) ?x_3 : has_coe_to_fun
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1))) := @coe_fn_trans ?x_70 ?x_71 ?x_72 ?x_73
- [class_instances] (1) ?x_72 : has_coe_t_aux
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_71 := @coe_base_aux ?x_74 ?x_75 ?x_76
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := @lean.parser.has_coe' ?x_77
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := @subalgebra.coe_to_submodule ?x_78 ?x_79 ?x_80 ?x_81 ?x_82
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := @subalgebra.has_coe ?x_83 ?x_84 ?x_85 ?x_86 ?x_87
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := complex.has_coe
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := tactic.abel.has_coe
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := int.snum_coe
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := snum.has_coe
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := tactic.ring.has_coe
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := @linear_equiv.has_coe ?x_88 ?x_89 ?x_90 ?x_91 ?x_92 ?x_93 ?x_94 ?x_95
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := @order_iso.has_coe ?x_96 ?x_97 ?x_98 ?x_99
- failed is_def_eq
- [class_instances] (2) ?x_76 : has_coe
- (@submodule ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1))
- (@algebra.module ℤ A
- (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1)
- (@algebra_int A _inst_1)))
- ?x_75 := @submodule.has_coe ?x_100 ?x_101 ?x_102 ?x_103 ?x_104
- [class_instances] (3) ?x_102 : ring ℤ := @subalgebra.ring ?x_105 ?x_106 ?x_107 ?x_108 ?x_109 ?x_110
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @algebra.comap.ring ?x_111 ?x_112 ?x_113 ?x_114 ?x_115 ?x_116 ?x_117 ?x_118
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @free_abelian_group.ring ?x_119 ?x_120
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := real.ring
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @cau_seq.ring ?x_121 ?x_122 ?x_123 ?x_124 ?x_125 ?x_126
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.polynomial_ring2 ?x_127 ?x_128 ?x_129
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.polynomial_ring ?x_130 ?x_131 ?x_132
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.option_ring ?x_133 ?x_134 ?x_135
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.ring_on_iter ?x_136 ?x_137 ?x_138 ?x_139
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.ring_on_sum ?x_140 ?x_141 ?x_142 ?x_143
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @mv_polynomial.ring ?x_144 ?x_145 ?x_146
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @linear_map.endomorphism_ring ?x_147 ?x_148 ?x_149 ?x_150 ?x_151
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @prod.ring ?x_152 ?x_153 ?x_154 ?x_155
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @pi.ring ?x_156 ?x_157 ?x_158
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @subtype.ring ?x_159 ?x_160 ?x_161 ?x_162
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @subset.ring ?x_163 ?x_164 ?x_165 ?x_166
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @finsupp.ring ?x_167 ?x_168 ?x_169 ?x_170
- failed is_def_eq
- [class_instances] (3) ?x_102 : ring ℤ := @nonneg_ring.to_ring ?x_171 ?x_172
- [class_instances] (4) ?x_172 : nonneg_ring ℤ := @linear_nonneg_ring.to_nonneg_ring ?x_173 ?x_174
- [class_instances] (3) ?x_102 : ring ℤ := @domain.to_ring ?x_105 ?x_106
- [class_instances] (4) ?x_106 : domain ℤ := real.domain
- failed is_def_eq
- [class_instances] (4) ?x_106 : domain ℤ := @division_ring.to_domain ?x_107 ?x_108
- [class_instances] (5) ?x_108 : division_ring ℤ := real.division_ring
- failed is_def_eq
- [class_instances] (5) ?x_108 : division_ring ℤ := rat.division_ring
- failed is_def_eq
- [class_instances] (5) ?x_108 : division_ring ℤ := @field.to_division_ring ?x_109 ?x_110
- [class_instances] (6) ?x_110 : field ℤ := real.field
- failed is_def_eq
- [class_instances] (6) ?x_110 : field ℤ := rat.field
- failed is_def_eq
- [class_instances] (6) ?x_110 : field ℤ := @linear_ordered_field.to_field ?x_111 ?x_112
- [class_instances] (7) ?x_112 : linear_ordered_field ℤ := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_112 : linear_ordered_field ℤ := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_112 : linear_ordered_field ℤ := @discrete_linear_ordered_field.to_linear_ordered_field ?x_113 ?x_114
- [class_instances] (8) ?x_114 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_114 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_110 : field ℤ := @discrete_field.to_field ?x_111 ?x_112
- [class_instances] (7) ?x_112 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_112 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_112 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_113 ?x_114
- failed is_def_eq
- [class_instances] (7) ?x_112 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_112 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_115 ?x_116
- [class_instances] (8) ?x_116 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_116 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_106 : domain ℤ := @linear_nonneg_ring.to_domain ?x_107 ?x_108
- [class_instances] (4) ?x_106 : domain ℤ := @to_domain ?x_107 ?x_108
- [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := @linear_nonneg_ring.to_linear_ordered_ring ?x_109 ?x_110
- [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := @linear_ordered_field.to_linear_ordered_ring ?x_109 ?x_110
- [class_instances] (6) ?x_110 : linear_ordered_field ℤ := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_110 : linear_ordered_field ℤ := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_110 : linear_ordered_field ℤ := @discrete_linear_ordered_field.to_linear_ordered_field ?x_111 ?x_112
- [class_instances] (7) ?x_112 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_112 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_108 : linear_ordered_ring ℤ := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_109 ?x_110
- [class_instances] (6) ?x_110 : linear_ordered_comm_ring ℤ := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (6) ?x_110 : linear_ordered_comm_ring ℤ := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (6) ?x_110 : linear_ordered_comm_ring ℤ := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_111 ?x_112
- [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_113 ?x_114 ?x_115 ?x_116
- [class_instances] (7) ?x_112 : decidable_linear_ordered_comm_ring ℤ := int.decidable_linear_ordered_comm_ring
- [class_instances] (3) ?x_103 : add_comm_group A := @tensor_product.add_comm_group ?x_113 ?x_114 ?x_115 ?x_116 ?x_117 ?x_118 ?x_119 ?x_120
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @direct_sum.add_comm_group ?x_121 ?x_122 ?x_123 ?x_124
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @dfinsupp.add_comm_group ?x_125 ?x_126 ?x_127
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := free_abelian_group.add_comm_group ?x_128
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @quotient_add_group.add_comm_group ?x_129 ?x_130 ?x_131 ?x_132
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := real.add_comm_group
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @submodule.quotient.add_comm_group ?x_133 ?x_134 ?x_135 ?x_136 ?x_137 ?x_138
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @linear_map.add_comm_group ?x_139 ?x_140 ?x_141 ?x_142 ?x_143 ?x_144 ?x_145 ?x_146
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @prod.add_comm_group ?x_147 ?x_148 ?x_149 ?x_150
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @pi.add_comm_group ?x_151 ?x_152 ?x_153
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @finsupp.add_comm_group ?x_154 ?x_155 ?x_156
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @submodule.add_comm_group ?x_157 ?x_158 ?x_159 ?x_160 ?x_161 ?x_162
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @subtype.add_comm_group ?x_163 ?x_164 ?x_165 ?x_166
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := rat.add_comm_group
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @nonneg_comm_group.to_add_comm_group ?x_167 ?x_168
- [class_instances] (4) ?x_168 : nonneg_comm_group A := @linear_nonneg_ring.to_nonneg_comm_group ?x_169 ?x_170
- [class_instances] (4) ?x_168 : nonneg_comm_group A := @nonneg_ring.to_nonneg_comm_group ?x_169 ?x_170
- [class_instances] (5) ?x_170 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_171 ?x_172
- [class_instances] (3) ?x_103 : add_comm_group A := @additive.add_comm_group ?x_113 ?x_114
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @add_monoid_hom.add_comm_group ?x_115 ?x_116 ?x_117 ?x_118
- failed is_def_eq
- [class_instances] (3) ?x_103 : add_comm_group A := @ring.to_add_comm_group ?x_119 ?x_120
- [class_instances] (4) ?x_120 : ring A := @subalgebra.ring ?x_121 ?x_122 ?x_123 ?x_124 ?x_125 ?x_126
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @algebra.comap.ring ?x_127 ?x_128 ?x_129 ?x_130 ?x_131 ?x_132 ?x_133 ?x_134
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @free_abelian_group.ring ?x_135 ?x_136
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := real.ring
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @cau_seq.ring ?x_137 ?x_138 ?x_139 ?x_140 ?x_141 ?x_142
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @mv_polynomial.polynomial_ring2 ?x_143 ?x_144 ?x_145
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @mv_polynomial.polynomial_ring ?x_146 ?x_147 ?x_148
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @mv_polynomial.option_ring ?x_149 ?x_150 ?x_151
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @mv_polynomial.ring_on_iter ?x_152 ?x_153 ?x_154 ?x_155
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @mv_polynomial.ring_on_sum ?x_156 ?x_157 ?x_158 ?x_159
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @mv_polynomial.ring ?x_160 ?x_161 ?x_162
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @linear_map.endomorphism_ring ?x_163 ?x_164 ?x_165 ?x_166 ?x_167
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @prod.ring ?x_168 ?x_169 ?x_170 ?x_171
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @pi.ring ?x_172 ?x_173 ?x_174
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @subtype.ring ?x_175 ?x_176 ?x_177 ?x_178
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @subset.ring ?x_179 ?x_180 ?x_181 ?x_182
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @finsupp.ring ?x_183 ?x_184 ?x_185 ?x_186
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @nonneg_ring.to_ring ?x_187 ?x_188
- [class_instances] (5) ?x_188 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_189 ?x_190
- [class_instances] (4) ?x_120 : ring A := @domain.to_ring ?x_121 ?x_122
- [class_instances] (5) ?x_122 : domain A := real.domain
- failed is_def_eq
- [class_instances] (5) ?x_122 : domain A := @division_ring.to_domain ?x_123 ?x_124
- [class_instances] (6) ?x_124 : division_ring A := real.division_ring
- failed is_def_eq
- [class_instances] (6) ?x_124 : division_ring A := rat.division_ring
- failed is_def_eq
- [class_instances] (6) ?x_124 : division_ring A := @field.to_division_ring ?x_125 ?x_126
- [class_instances] (7) ?x_126 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_126 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_126 : field A := @linear_ordered_field.to_field ?x_127 ?x_128
- [class_instances] (8) ?x_128 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_129 ?x_130
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : field A := @discrete_field.to_field ?x_127 ?x_128
- [class_instances] (8) ?x_128 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := @local_ring.residue_field.discrete_field ?x_129 ?x_130
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_131 ?x_132
- [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_122 : domain A := @linear_nonneg_ring.to_domain ?x_123 ?x_124
- [class_instances] (5) ?x_122 : domain A := @to_domain ?x_123 ?x_124
- [class_instances] (6) ?x_124 : linear_ordered_ring A := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_124 : linear_ordered_ring A := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_125 ?x_126
- [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_125 ?x_126
- [class_instances] (7) ?x_126 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_127 ?x_128
- [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_125 ?x_126
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_127 ?x_128
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130 ?x_131 ?x_132
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_122 : domain A := @integral_domain.to_domain ?x_123 ?x_124
- [class_instances] (6) ?x_124 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @polynomial.integral_domain ?x_125 ?x_126
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @ideal.quotient.integral_domain ?x_127 ?x_128 ?x_129 ?x_130
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @subring.domain ?x_131 ?x_132 ?x_133 ?x_134
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @euclidean_domain.integral_domain ?x_135 ?x_136
- [class_instances] (7) ?x_136 : euclidean_domain A := @polynomial.euclidean_domain ?x_137 ?x_138
- failed is_def_eq
- [class_instances] (7) ?x_136 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_139 ?x_140
- [class_instances] (8) ?x_140 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_140 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_140 : discrete_field A := @local_ring.residue_field.discrete_field ?x_141 ?x_142
- failed is_def_eq
- [class_instances] (8) ?x_140 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_140 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_143 ?x_144
- [class_instances] (9) ?x_144 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_144 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_136 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @normalization_domain.to_integral_domain ?x_125 ?x_126
- [class_instances] (7) ?x_126 : normalization_domain A := @polynomial.normalization_domain ?x_127 ?x_128
- failed is_def_eq
- [class_instances] (7) ?x_126 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (7) ?x_126 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_129 ?x_130
- [class_instances] (8) ?x_130 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @field.to_integral_domain ?x_125 ?x_126
- [class_instances] (7) ?x_126 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_126 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_126 : field A := @linear_ordered_field.to_field ?x_127 ?x_128
- [class_instances] (8) ?x_128 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_129 ?x_130
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : field A := @discrete_field.to_field ?x_127 ?x_128
- [class_instances] (8) ?x_128 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := @local_ring.residue_field.discrete_field ?x_129 ?x_130
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_131 ?x_132
- [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_132 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @discrete_field.to_integral_domain ?x_125 ?x_126 ?x_127
- [class_instances] (7) ?x_126 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := @local_ring.residue_field.discrete_field ?x_128 ?x_129
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_130 ?x_131
- [class_instances] (8) ?x_131 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_131 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_124 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_125 ?x_126
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_127 ?x_128
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130 ?x_131 ?x_132
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := int.ring
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @division_ring.to_ring ?x_121 ?x_122
- [class_instances] (5) ?x_122 : division_ring A := real.division_ring
- failed is_def_eq
- [class_instances] (5) ?x_122 : division_ring A := rat.division_ring
- failed is_def_eq
- [class_instances] (5) ?x_122 : division_ring A := @field.to_division_ring ?x_123 ?x_124
- [class_instances] (6) ?x_124 : field A := real.field
- failed is_def_eq
- [class_instances] (6) ?x_124 : field A := rat.field
- failed is_def_eq
- [class_instances] (6) ?x_124 : field A := @linear_ordered_field.to_field ?x_125 ?x_126
- [class_instances] (7) ?x_126 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_127 ?x_128
- [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_124 : field A := @discrete_field.to_field ?x_125 ?x_126
- [class_instances] (7) ?x_126 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := @local_ring.residue_field.discrete_field ?x_127 ?x_128
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_129 ?x_130
- [class_instances] (8) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @ordered_ring.to_ring ?x_121 ?x_122
- [class_instances] (5) ?x_122 : ordered_ring A := real.ordered_ring
- failed is_def_eq
- [class_instances] (5) ?x_122 : ordered_ring A := rat.ordered_ring
- failed is_def_eq
- [class_instances] (5) ?x_122 : ordered_ring A := @nonneg_ring.to_ordered_ring ?x_123 ?x_124
- [class_instances] (6) ?x_124 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_125 ?x_126
- [class_instances] (5) ?x_122 : ordered_ring A := @linear_ordered_ring.to_ordered_ring ?x_123 ?x_124
- [class_instances] (6) ?x_124 : linear_ordered_ring A := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_124 : linear_ordered_ring A := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_125 ?x_126
- [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_125 ?x_126
- [class_instances] (7) ?x_126 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_127 ?x_128
- [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_128 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_124 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_125 ?x_126
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_126 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_127 ?x_128
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130 ?x_131 ?x_132
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_128 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_129 ?x_130
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_130 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_120 : ring A := @comm_ring.to_ring ?x_121 ?x_122
- [class_instances] (5) ?x_122 : comm_ring A := _inst_1
- [class_instances] (3) ?x_104 : @module ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1)) := @algebra.comap.module ?x_123 ?x_124 ?x_125 ?x_126 ?x_127 ?x_128 ?x_129 ?x_130
- failed is_def_eq
- [class_instances] (3) ?x_104 : @module ℤ A
- (@domain.to_ring ℤ
- (@to_domain ℤ
- (@linear_ordered_comm_ring.to_linear_ordered_ring ℤ
- (@decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ℤ
- int.decidable_linear_ordered_comm_ring))))
- (@ring.to_add_comm_group A (@comm_ring.to_ring A _inst_1)) := @algebra.module ?x_131 ?x_132 ?x_133 ?x_134 ?x_135
- [class_instances] class-instance resolution trace
- [class_instances] (0) ?x_136 : comm_ring ℤ := _inst_1
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @subalgebra.comm_ring ?x_137 ?x_138 ?x_139 ?x_140 ?x_141 ?x_142
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @algebra.comap.comm_ring ?x_143 ?x_144 ?x_145 ?x_146 ?x_147 ?x_148 ?x_149 ?x_150
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @free_abelian_group.comm_ring ?x_151 ?x_152
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := complex.comm_ring
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := real.comm_ring
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @cau_seq.completion.comm_ring ?x_153 ?x_154 ?x_155 ?x_156 ?x_157 ?x_158
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @cau_seq.comm_ring ?x_159 ?x_160 ?x_161 ?x_162 ?x_163 ?x_164
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @mv_polynomial.comm_ring ?x_165 ?x_166 ?x_167
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @polynomial.comm_ring ?x_168 ?x_169
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @local_ring.comm_ring ?x_170 ?x_171
- [class_instances] (1) ?x_171 : local_ring ℤ := @discrete_field.local_ring ?x_172 ?x_173
- [class_instances] (2) ?x_173 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (2) ?x_173 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (2) ?x_173 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_174 ?x_175
- failed is_def_eq
- [class_instances] (2) ?x_173 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (2) ?x_173 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_176 ?x_177
- [class_instances] (3) ?x_177 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_177 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @ideal.quotient.comm_ring ?x_137 ?x_138 ?x_139
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @prod.comm_ring ?x_140 ?x_141 ?x_142 ?x_143
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @pi.comm_ring ?x_144 ?x_145 ?x_146
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @subtype.comm_ring ?x_147 ?x_148 ?x_149 ?x_150
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @subset.comm_ring ?x_151 ?x_152 ?x_153 ?x_154
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @finsupp.comm_ring ?x_155 ?x_156 ?x_157 ?x_158
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := rat.comm_ring
- failed is_def_eq
- [class_instances] (0) ?x_136 : comm_ring ℤ := @nonzero_comm_ring.to_comm_ring ?x_159 ?x_160
- [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := real.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @polynomial.nonzero_comm_ring ?x_161 ?x_162
- failed is_def_eq
- [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @local_ring.to_nonzero_comm_ring ?x_163 ?x_164
- [class_instances] (2) ?x_164 : local_ring ℤ := @discrete_field.local_ring ?x_165 ?x_166
- [class_instances] (3) ?x_166 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_166 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_166 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_167 ?x_168
- failed is_def_eq
- [class_instances] (3) ?x_166 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_166 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_169 ?x_170
- [class_instances] (4) ?x_170 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_170 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @prod.nonzero_comm_ring ?x_161 ?x_162 ?x_163 ?x_164
- failed is_def_eq
- [class_instances] (1) ?x_160 : nonzero_comm_ring ℤ := @euclidean_domain.to_nonzero_comm_ring ?x_165 ?x_166
- [class_instances] (2) ?x_166 : euclidean_domain ℤ := @polynomial.euclidean_domain ?x_167 ?x_168
- failed is_def_eq
- [class_instances] (2) ?x_166 : euclidean_domain ℤ := @discrete_field.to_euclidean_domain ?x_169 ?x_170
- [class_instances] (3) ?x_170 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_170 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_170 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_171 ?x_172
- failed is_def_eq
- [class_instances] (3) ?x_170 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_170 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_173 ?x_174
- [class_instances] (4) ?x_174 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_174 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (2) ?x_166 : euclidean_domain ℤ := int.euclidean_domain
- [class_instances] class-instance resolution trace
- [class_instances] (0) ?x_167 : ring A := @subalgebra.ring ?x_168 ?x_169 ?x_170 ?x_171 ?x_172 ?x_173
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @algebra.comap.ring ?x_174 ?x_175 ?x_176 ?x_177 ?x_178 ?x_179 ?x_180 ?x_181
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @free_abelian_group.ring ?x_182 ?x_183
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := real.ring
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @cau_seq.ring ?x_184 ?x_185 ?x_186 ?x_187 ?x_188 ?x_189
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @mv_polynomial.polynomial_ring2 ?x_190 ?x_191 ?x_192
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @mv_polynomial.polynomial_ring ?x_193 ?x_194 ?x_195
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @mv_polynomial.option_ring ?x_196 ?x_197 ?x_198
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @mv_polynomial.ring_on_iter ?x_199 ?x_200 ?x_201 ?x_202
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @mv_polynomial.ring_on_sum ?x_203 ?x_204 ?x_205 ?x_206
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @mv_polynomial.ring ?x_207 ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @linear_map.endomorphism_ring ?x_210 ?x_211 ?x_212 ?x_213 ?x_214
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @prod.ring ?x_215 ?x_216 ?x_217 ?x_218
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @pi.ring ?x_219 ?x_220 ?x_221
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @subtype.ring ?x_222 ?x_223 ?x_224 ?x_225
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @subset.ring ?x_226 ?x_227 ?x_228 ?x_229
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @finsupp.ring ?x_230 ?x_231 ?x_232 ?x_233
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @nonneg_ring.to_ring ?x_234 ?x_235
- [class_instances] (1) ?x_235 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_236 ?x_237
- [class_instances] (0) ?x_167 : ring A := @domain.to_ring ?x_168 ?x_169
- [class_instances] (1) ?x_169 : domain A := real.domain
- failed is_def_eq
- [class_instances] (1) ?x_169 : domain A := @division_ring.to_domain ?x_170 ?x_171
- [class_instances] (2) ?x_171 : division_ring A := real.division_ring
- failed is_def_eq
- [class_instances] (2) ?x_171 : division_ring A := rat.division_ring
- failed is_def_eq
- [class_instances] (2) ?x_171 : division_ring A := @field.to_division_ring ?x_172 ?x_173
- [class_instances] (3) ?x_173 : field A := real.field
- failed is_def_eq
- [class_instances] (3) ?x_173 : field A := rat.field
- failed is_def_eq
- [class_instances] (3) ?x_173 : field A := @linear_ordered_field.to_field ?x_174 ?x_175
- [class_instances] (4) ?x_175 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_176 ?x_177
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : field A := @discrete_field.to_field ?x_174 ?x_175
- [class_instances] (4) ?x_175 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := @local_ring.residue_field.discrete_field ?x_176 ?x_177
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_178 ?x_179
- [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (1) ?x_169 : domain A := @linear_nonneg_ring.to_domain ?x_170 ?x_171
- [class_instances] (1) ?x_169 : domain A := @to_domain ?x_170 ?x_171
- [class_instances] (2) ?x_171 : linear_ordered_ring A := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (2) ?x_171 : linear_ordered_ring A := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_172 ?x_173
- [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_172 ?x_173
- [class_instances] (3) ?x_173 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_174 ?x_175
- [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_172 ?x_173
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_174 ?x_175
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177 ?x_178 ?x_179
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (1) ?x_169 : domain A := @integral_domain.to_domain ?x_170 ?x_171
- [class_instances] (2) ?x_171 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @polynomial.integral_domain ?x_172 ?x_173
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @ideal.quotient.integral_domain ?x_174 ?x_175 ?x_176 ?x_177
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @subring.domain ?x_178 ?x_179 ?x_180 ?x_181
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @euclidean_domain.integral_domain ?x_182 ?x_183
- [class_instances] (3) ?x_183 : euclidean_domain A := @polynomial.euclidean_domain ?x_184 ?x_185
- failed is_def_eq
- [class_instances] (3) ?x_183 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_186 ?x_187
- [class_instances] (4) ?x_187 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_187 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_187 : discrete_field A := @local_ring.residue_field.discrete_field ?x_188 ?x_189
- failed is_def_eq
- [class_instances] (4) ?x_187 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_187 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_190 ?x_191
- [class_instances] (5) ?x_191 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_191 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_183 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @normalization_domain.to_integral_domain ?x_172 ?x_173
- [class_instances] (3) ?x_173 : normalization_domain A := @polynomial.normalization_domain ?x_174 ?x_175
- failed is_def_eq
- [class_instances] (3) ?x_173 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (3) ?x_173 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_176 ?x_177
- [class_instances] (4) ?x_177 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @field.to_integral_domain ?x_172 ?x_173
- [class_instances] (3) ?x_173 : field A := real.field
- failed is_def_eq
- [class_instances] (3) ?x_173 : field A := rat.field
- failed is_def_eq
- [class_instances] (3) ?x_173 : field A := @linear_ordered_field.to_field ?x_174 ?x_175
- [class_instances] (4) ?x_175 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_176 ?x_177
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : field A := @discrete_field.to_field ?x_174 ?x_175
- [class_instances] (4) ?x_175 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := @local_ring.residue_field.discrete_field ?x_176 ?x_177
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_178 ?x_179
- [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_179 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @discrete_field.to_integral_domain ?x_172 ?x_173 ?x_174
- [class_instances] (3) ?x_173 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := @local_ring.residue_field.discrete_field ?x_175 ?x_176
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_177 ?x_178
- [class_instances] (4) ?x_178 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_178 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (2) ?x_171 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_172 ?x_173
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_174 ?x_175
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177 ?x_178 ?x_179
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := int.ring
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @division_ring.to_ring ?x_168 ?x_169
- [class_instances] (1) ?x_169 : division_ring A := real.division_ring
- failed is_def_eq
- [class_instances] (1) ?x_169 : division_ring A := rat.division_ring
- failed is_def_eq
- [class_instances] (1) ?x_169 : division_ring A := @field.to_division_ring ?x_170 ?x_171
- [class_instances] (2) ?x_171 : field A := real.field
- failed is_def_eq
- [class_instances] (2) ?x_171 : field A := rat.field
- failed is_def_eq
- [class_instances] (2) ?x_171 : field A := @linear_ordered_field.to_field ?x_172 ?x_173
- [class_instances] (3) ?x_173 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_174 ?x_175
- [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (2) ?x_171 : field A := @discrete_field.to_field ?x_172 ?x_173
- [class_instances] (3) ?x_173 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := @local_ring.residue_field.discrete_field ?x_174 ?x_175
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_176 ?x_177
- [class_instances] (4) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @ordered_ring.to_ring ?x_168 ?x_169
- [class_instances] (1) ?x_169 : ordered_ring A := real.ordered_ring
- failed is_def_eq
- [class_instances] (1) ?x_169 : ordered_ring A := rat.ordered_ring
- failed is_def_eq
- [class_instances] (1) ?x_169 : ordered_ring A := @nonneg_ring.to_ordered_ring ?x_170 ?x_171
- [class_instances] (2) ?x_171 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_172 ?x_173
- [class_instances] (1) ?x_169 : ordered_ring A := @linear_ordered_ring.to_ordered_ring ?x_170 ?x_171
- [class_instances] (2) ?x_171 : linear_ordered_ring A := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (2) ?x_171 : linear_ordered_ring A := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_172 ?x_173
- [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_172 ?x_173
- [class_instances] (3) ?x_173 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_174 ?x_175
- [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_175 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (2) ?x_171 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_172 ?x_173
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (3) ?x_173 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_174 ?x_175
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177 ?x_178 ?x_179
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_175 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_176 ?x_177
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_177 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (0) ?x_167 : ring A := @comm_ring.to_ring ?x_168 ?x_169
- [class_instances] (1) ?x_169 : comm_ring A := _inst_1
- [class_instances] (4) ?x_133 : comm_ring ℤ := _inst_1
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @subalgebra.comm_ring ?x_170 ?x_171 ?x_172 ?x_173 ?x_174 ?x_175
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @algebra.comap.comm_ring ?x_176 ?x_177 ?x_178 ?x_179 ?x_180 ?x_181 ?x_182 ?x_183
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @free_abelian_group.comm_ring ?x_184 ?x_185
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := complex.comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := real.comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @cau_seq.completion.comm_ring ?x_186 ?x_187 ?x_188 ?x_189 ?x_190 ?x_191
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @cau_seq.comm_ring ?x_192 ?x_193 ?x_194 ?x_195 ?x_196 ?x_197
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @mv_polynomial.comm_ring ?x_198 ?x_199 ?x_200
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @polynomial.comm_ring ?x_201 ?x_202
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @local_ring.comm_ring ?x_203 ?x_204
- [class_instances] (5) ?x_204 : local_ring ℤ := @discrete_field.local_ring ?x_205 ?x_206
- [class_instances] (6) ?x_206 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (6) ?x_206 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (6) ?x_206 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_207 ?x_208
- failed is_def_eq
- [class_instances] (6) ?x_206 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (6) ?x_206 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_209 ?x_210
- [class_instances] (7) ?x_210 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_210 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @ideal.quotient.comm_ring ?x_170 ?x_171 ?x_172
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @prod.comm_ring ?x_173 ?x_174 ?x_175 ?x_176
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @pi.comm_ring ?x_177 ?x_178 ?x_179
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @subtype.comm_ring ?x_180 ?x_181 ?x_182 ?x_183
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @subset.comm_ring ?x_184 ?x_185 ?x_186 ?x_187
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @finsupp.comm_ring ?x_188 ?x_189 ?x_190 ?x_191
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := rat.comm_ring
- failed is_def_eq
- [class_instances] (4) ?x_133 : comm_ring ℤ := @nonzero_comm_ring.to_comm_ring ?x_192 ?x_193
- [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := real.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @polynomial.nonzero_comm_ring ?x_194 ?x_195
- failed is_def_eq
- [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @local_ring.to_nonzero_comm_ring ?x_196 ?x_197
- [class_instances] (6) ?x_197 : local_ring ℤ := @discrete_field.local_ring ?x_198 ?x_199
- [class_instances] (7) ?x_199 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_199 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_199 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_200 ?x_201
- failed is_def_eq
- [class_instances] (7) ?x_199 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_199 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_202 ?x_203
- [class_instances] (8) ?x_203 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_203 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @prod.nonzero_comm_ring ?x_194 ?x_195 ?x_196 ?x_197
- failed is_def_eq
- [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @euclidean_domain.to_nonzero_comm_ring ?x_198 ?x_199
- [class_instances] (6) ?x_199 : euclidean_domain ℤ := @polynomial.euclidean_domain ?x_200 ?x_201
- failed is_def_eq
- [class_instances] (6) ?x_199 : euclidean_domain ℤ := @discrete_field.to_euclidean_domain ?x_202 ?x_203
- [class_instances] (7) ?x_203 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_203 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_203 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_204 ?x_205
- failed is_def_eq
- [class_instances] (7) ?x_203 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_203 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_199 : euclidean_domain ℤ := int.euclidean_domain
- [class_instances] (4) ?x_134 : ring A := @subalgebra.ring ?x_200 ?x_201 ?x_202 ?x_203 ?x_204 ?x_205
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @algebra.comap.ring ?x_206 ?x_207 ?x_208 ?x_209 ?x_210 ?x_211 ?x_212 ?x_213
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @free_abelian_group.ring ?x_214 ?x_215
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := real.ring
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @cau_seq.ring ?x_216 ?x_217 ?x_218 ?x_219 ?x_220 ?x_221
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring2 ?x_222 ?x_223 ?x_224
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring ?x_225 ?x_226 ?x_227
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.option_ring ?x_228 ?x_229 ?x_230
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_iter ?x_231 ?x_232 ?x_233 ?x_234
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_sum ?x_235 ?x_236 ?x_237 ?x_238
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring ?x_239 ?x_240 ?x_241
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @linear_map.endomorphism_ring ?x_242 ?x_243 ?x_244 ?x_245 ?x_246
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @prod.ring ?x_247 ?x_248 ?x_249 ?x_250
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @pi.ring ?x_251 ?x_252 ?x_253
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @subtype.ring ?x_254 ?x_255 ?x_256 ?x_257
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @subset.ring ?x_258 ?x_259 ?x_260 ?x_261
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @finsupp.ring ?x_262 ?x_263 ?x_264 ?x_265
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @nonneg_ring.to_ring ?x_266 ?x_267
- [class_instances] (5) ?x_267 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_268 ?x_269
- [class_instances] (4) ?x_134 : ring A := @domain.to_ring ?x_200 ?x_201
- [class_instances] (5) ?x_201 : domain A := real.domain
- failed is_def_eq
- [class_instances] (5) ?x_201 : domain A := @division_ring.to_domain ?x_202 ?x_203
- [class_instances] (6) ?x_203 : division_ring A := real.division_ring
- failed is_def_eq
- [class_instances] (6) ?x_203 : division_ring A := rat.division_ring
- failed is_def_eq
- [class_instances] (6) ?x_203 : division_ring A := @field.to_division_ring ?x_204 ?x_205
- [class_instances] (7) ?x_205 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := @linear_ordered_field.to_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_208 ?x_209
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := @discrete_field.to_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := @local_ring.residue_field.discrete_field ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_210 ?x_211
- [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_201 : domain A := @linear_nonneg_ring.to_domain ?x_202 ?x_203
- [class_instances] (5) ?x_201 : domain A := @to_domain ?x_202 ?x_203
- [class_instances] (6) ?x_203 : linear_ordered_ring A := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_203 : linear_ordered_ring A := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_204 ?x_205
- [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_201 : domain A := @integral_domain.to_domain ?x_202 ?x_203
- [class_instances] (6) ?x_203 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @polynomial.integral_domain ?x_204 ?x_205
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @ideal.quotient.integral_domain ?x_206 ?x_207 ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @subring.domain ?x_210 ?x_211 ?x_212 ?x_213
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @euclidean_domain.integral_domain ?x_214 ?x_215
- [class_instances] (7) ?x_215 : euclidean_domain A := @polynomial.euclidean_domain ?x_216 ?x_217
- failed is_def_eq
- [class_instances] (7) ?x_215 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_218 ?x_219
- [class_instances] (8) ?x_219 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := @local_ring.residue_field.discrete_field ?x_220 ?x_221
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_222 ?x_223
- [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_215 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @normalization_domain.to_integral_domain ?x_204 ?x_205
- [class_instances] (7) ?x_205 : normalization_domain A := @polynomial.normalization_domain ?x_206 ?x_207
- failed is_def_eq
- [class_instances] (7) ?x_205 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (7) ?x_205 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_208 ?x_209
- [class_instances] (8) ?x_209 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @field.to_integral_domain ?x_204 ?x_205
- [class_instances] (7) ?x_205 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := @linear_ordered_field.to_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_208 ?x_209
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := @discrete_field.to_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := @local_ring.residue_field.discrete_field ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_210 ?x_211
- [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @discrete_field.to_integral_domain ?x_204 ?x_205 ?x_206
- [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_207 ?x_208
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_209 ?x_210
- [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := int.ring
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @division_ring.to_ring ?x_200 ?x_201
- [class_instances] (5) ?x_201 : division_ring A := real.division_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : division_ring A := rat.division_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : division_ring A := @field.to_division_ring ?x_202 ?x_203
- [class_instances] (6) ?x_203 : field A := real.field
- failed is_def_eq
- [class_instances] (6) ?x_203 : field A := rat.field
- failed is_def_eq
- [class_instances] (6) ?x_203 : field A := @linear_ordered_field.to_field ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : field A := @discrete_field.to_field ?x_204 ?x_205
- [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_206 ?x_207
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_208 ?x_209
- [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @ordered_ring.to_ring ?x_200 ?x_201
- [class_instances] (5) ?x_201 : ordered_ring A := real.ordered_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : ordered_ring A := rat.ordered_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : ordered_ring A := @nonneg_ring.to_ordered_ring ?x_202 ?x_203
- [class_instances] (6) ?x_203 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_204 ?x_205
- [class_instances] (5) ?x_201 : ordered_ring A := @linear_ordered_ring.to_ordered_ring ?x_202 ?x_203
- [class_instances] (6) ?x_203 : linear_ordered_ring A := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_203 : linear_ordered_ring A := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_204 ?x_205
- [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @comm_ring.to_ring ?x_200 ?x_201
- [class_instances] (5) ?x_201 : comm_ring A := _inst_1
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @algebra_int ?x_202 ?x_203
- [class_instances] class-instance resolution trace
- [class_instances] (0) ?x_204 : comm_ring A := _inst_1
- [class_instances] (5) ?x_203 : comm_ring A := _inst_1
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @alg_hom.has_coe_to_fun ?x_205 ?x_206 ?x_207 ?x_208 ?x_209 ?x_210 ?x_211 ?x_212
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @direct_sum.has_coe_to_fun ?x_213 ?x_214 ?x_215 ?x_216
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @dfinsupp.has_coe_to_fun ?x_217 ?x_218 ?x_219
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @cau_seq.has_coe_to_fun ?x_220 ?x_221 ?x_222 ?x_223 ?x_224
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @order_embedding.has_coe_to_fun ?x_225 ?x_226 ?x_227 ?x_228
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @add_equiv.has_coe_to_fun ?x_229 ?x_230 ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @mul_equiv.has_coe_to_fun ?x_233 ?x_234 ?x_235 ?x_236
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @finsupp.has_coe_to_fun ?x_237 ?x_238 ?x_239
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @linear_map.has_coe_to_fun ?x_240 ?x_241 ?x_242 ?x_243 ?x_244 ?x_245 ?x_246 ?x_247
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @ring_hom.has_coe_to_fun ?x_248 ?x_249 ?x_250 ?x_251
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @add_monoid_hom.has_coe_to_fun ?x_252 ?x_253 ?x_254 ?x_255
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @monoid_hom.has_coe_to_fun ?x_256 ?x_257 ?x_258 ?x_259
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @function.has_coe_to_fun ?x_260 ?x_261
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @equiv.has_coe_to_fun ?x_262 ?x_263
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @applicative_transformation.has_coe_to_fun ?x_264 ?x_265 ?x_266 ?x_267 ?x_268 ?x_269
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @expr.has_coe_to_fun ?x_270
- failed is_def_eq
- [class_instances] (1) ?x_73 : has_coe_to_fun (set A) := @coe_fn_trans ?x_271 ?x_272 ?x_273 ?x_274
- [class_instances] (2) ?x_273 : has_coe_t_aux (set A) ?x_272 := @coe_base_aux ?x_275 ?x_276 ?x_277
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @lean.parser.has_coe' ?x_278
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @subalgebra.coe_to_submodule ?x_279 ?x_280 ?x_281 ?x_282 ?x_283
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @subalgebra.has_coe ?x_284 ?x_285 ?x_286 ?x_287 ?x_288
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := complex.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := tactic.abel.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := int.snum_coe
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := snum.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := tactic.ring.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @linear_equiv.has_coe ?x_289 ?x_290 ?x_291 ?x_292 ?x_293 ?x_294 ?x_295 ?x_296
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @order_iso.has_coe ?x_297 ?x_298 ?x_299 ?x_300
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @submodule.has_coe ?x_301 ?x_302 ?x_303 ?x_304 ?x_305
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @quotient_add_group.has_coe ?x_306 ?x_307 ?x_308 ?x_309
- [class_instances] (4) ?x_307 : add_group (set A) := @dfinsupp.add_group ?x_310 ?x_311 ?x_312
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := @quotient_add_group.add_group ?x_313 ?x_314 ?x_315 ?x_316
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := real.add_group
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := @prod.add_group ?x_317 ?x_318 ?x_319 ?x_320
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := @pi.add_group ?x_321 ?x_322 ?x_323
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := @finsupp.add_group ?x_324 ?x_325 ?x_326
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := @subtype.add_group ?x_327 ?x_328 ?x_329 ?x_330
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := rat.add_group
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := @additive.add_group ?x_331 ?x_332
- failed is_def_eq
- [class_instances] (4) ?x_307 : add_group (set A) := @add_comm_group.to_add_group ?x_333 ?x_334
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @tensor_product.add_comm_group ?x_335 ?x_336 ?x_337 ?x_338 ?x_339 ?x_340 ?x_341 ?x_342
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @direct_sum.add_comm_group ?x_343 ?x_344 ?x_345 ?x_346
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @dfinsupp.add_comm_group ?x_347 ?x_348 ?x_349
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := free_abelian_group.add_comm_group ?x_350
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @quotient_add_group.add_comm_group ?x_351 ?x_352 ?x_353 ?x_354
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := real.add_comm_group
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @submodule.quotient.add_comm_group ?x_355 ?x_356 ?x_357 ?x_358 ?x_359 ?x_360
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @linear_map.add_comm_group ?x_361 ?x_362 ?x_363 ?x_364 ?x_365 ?x_366 ?x_367 ?x_368
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @prod.add_comm_group ?x_369 ?x_370 ?x_371 ?x_372
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @pi.add_comm_group ?x_373 ?x_374 ?x_375
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @finsupp.add_comm_group ?x_376 ?x_377 ?x_378
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @submodule.add_comm_group ?x_379 ?x_380 ?x_381 ?x_382 ?x_383 ?x_384
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @subtype.add_comm_group ?x_385 ?x_386 ?x_387 ?x_388
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := rat.add_comm_group
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @nonneg_comm_group.to_add_comm_group ?x_389 ?x_390
- [class_instances] (6) ?x_390 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_391 ?x_392
- [class_instances] (6) ?x_390 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_391 ?x_392
- [class_instances] (7) ?x_392 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_393 ?x_394
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @additive.add_comm_group ?x_335 ?x_336
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @add_monoid_hom.add_comm_group ?x_337 ?x_338 ?x_339 ?x_340
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @ring.to_add_comm_group ?x_341 ?x_342
- [class_instances] (6) ?x_342 : ring (set A) := @subalgebra.ring ?x_343 ?x_344 ?x_345 ?x_346 ?x_347 ?x_348
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @algebra.comap.ring ?x_349 ?x_350 ?x_351 ?x_352 ?x_353 ?x_354 ?x_355 ?x_356
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @free_abelian_group.ring ?x_357 ?x_358
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := real.ring
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @cau_seq.ring ?x_359 ?x_360 ?x_361 ?x_362 ?x_363 ?x_364
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.polynomial_ring2 ?x_365 ?x_366 ?x_367
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.polynomial_ring ?x_368 ?x_369 ?x_370
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.option_ring ?x_371 ?x_372 ?x_373
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.ring_on_iter ?x_374 ?x_375 ?x_376 ?x_377
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.ring_on_sum ?x_378 ?x_379 ?x_380 ?x_381
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @mv_polynomial.ring ?x_382 ?x_383 ?x_384
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @linear_map.endomorphism_ring ?x_385 ?x_386 ?x_387 ?x_388 ?x_389
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @prod.ring ?x_390 ?x_391 ?x_392 ?x_393
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @pi.ring ?x_394 ?x_395 ?x_396
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @subtype.ring ?x_397 ?x_398 ?x_399 ?x_400
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @subset.ring ?x_401 ?x_402 ?x_403 ?x_404
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @finsupp.ring ?x_405 ?x_406 ?x_407 ?x_408
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @nonneg_ring.to_ring ?x_409 ?x_410
- [class_instances] (7) ?x_410 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_411 ?x_412
- [class_instances] (6) ?x_342 : ring (set A) := @domain.to_ring ?x_343 ?x_344
- [class_instances] (7) ?x_344 : domain (set A) := real.domain
- failed is_def_eq
- [class_instances] (7) ?x_344 : domain (set A) := @division_ring.to_domain ?x_345 ?x_346
- [class_instances] (8) ?x_346 : division_ring (set A) := real.division_ring
- failed is_def_eq
- [class_instances] (8) ?x_346 : division_ring (set A) := rat.division_ring
- failed is_def_eq
- [class_instances] (8) ?x_346 : division_ring (set A) := @field.to_division_ring ?x_347 ?x_348
- [class_instances] (9) ?x_348 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_344 : domain (set A) := @linear_nonneg_ring.to_domain ?x_345 ?x_346
- [class_instances] (7) ?x_344 : domain (set A) := @to_domain ?x_345 ?x_346
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_347 ?x_348
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_344 : domain (set A) := @integral_domain.to_domain ?x_345 ?x_346
- [class_instances] (8) ?x_346 : integral_domain (set A) := real.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @polynomial.integral_domain ?x_347 ?x_348
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_349 ?x_350 ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @subring.domain ?x_353 ?x_354 ?x_355 ?x_356
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_357 ?x_358
- [class_instances] (9) ?x_358 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_359 ?x_360
- failed is_def_eq
- [class_instances] (9) ?x_358 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_361 ?x_362
- [class_instances] (10) ?x_362 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_363 ?x_364
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_365 ?x_366
- [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_358 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_347 ?x_348
- [class_instances] (9) ?x_348 : normalization_domain (set A) := @polynomial.normalization_domain ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (9) ?x_348 : normalization_domain (set A) := int.normalization_domain
- failed is_def_eq
- [class_instances] (9) ?x_348 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_351 ?x_352
- [class_instances] (10) ?x_352 : gcd_domain (set A) := int.gcd_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := rat.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @field.to_integral_domain ?x_347 ?x_348
- [class_instances] (9) ?x_348 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_347 ?x_348 ?x_349
- [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_350 ?x_351
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_352 ?x_353
- [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := int.ring
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @division_ring.to_ring ?x_343 ?x_344
- [class_instances] (7) ?x_344 : division_ring (set A) := real.division_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : division_ring (set A) := rat.division_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : division_ring (set A) := @field.to_division_ring ?x_345 ?x_346
- [class_instances] (8) ?x_346 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (8) ?x_346 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (8) ?x_346 : field (set A) := @linear_ordered_field.to_field ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : field (set A) := @discrete_field.to_field ?x_347 ?x_348
- [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @ordered_ring.to_ring ?x_343 ?x_344
- [class_instances] (7) ?x_344 : ordered_ring (set A) := real.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : ordered_ring (set A) := rat.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_345 ?x_346
- [class_instances] (8) ?x_346 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_347 ?x_348
- [class_instances] (7) ?x_344 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_345 ?x_346
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_347 ?x_348
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_342 : ring (set A) := @comm_ring.to_ring ?x_343 ?x_344
- [class_instances] (7) ?x_344 : comm_ring (set A) := _inst_1
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @subalgebra.comm_ring ?x_345 ?x_346 ?x_347 ?x_348 ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @algebra.comap.comm_ring ?x_351 ?x_352 ?x_353 ?x_354 ?x_355 ?x_356 ?x_357 ?x_358
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @free_abelian_group.comm_ring ?x_359 ?x_360
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := complex.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := real.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @cau_seq.completion.comm_ring ?x_361 ?x_362 ?x_363 ?x_364 ?x_365 ?x_366
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @cau_seq.comm_ring ?x_367 ?x_368 ?x_369 ?x_370 ?x_371 ?x_372
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @mv_polynomial.comm_ring ?x_373 ?x_374 ?x_375
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @polynomial.comm_ring ?x_376 ?x_377
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @local_ring.comm_ring ?x_378 ?x_379
- [class_instances] (8) ?x_379 : local_ring (set A) := @discrete_field.local_ring ?x_380 ?x_381
- [class_instances] (9) ?x_381 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_381 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_381 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_382 ?x_383
- failed is_def_eq
- [class_instances] (9) ?x_381 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_381 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_384 ?x_385
- [class_instances] (10) ?x_385 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_385 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @ideal.quotient.comm_ring ?x_345 ?x_346 ?x_347
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @prod.comm_ring ?x_348 ?x_349 ?x_350 ?x_351
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @pi.comm_ring ?x_352 ?x_353 ?x_354
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @subtype.comm_ring ?x_355 ?x_356 ?x_357 ?x_358
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @subset.comm_ring ?x_359 ?x_360 ?x_361 ?x_362
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @finsupp.comm_ring ?x_363 ?x_364 ?x_365 ?x_366
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := rat.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @nonzero_comm_ring.to_comm_ring ?x_367 ?x_368
- [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := real.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @polynomial.nonzero_comm_ring ?x_369 ?x_370
- failed is_def_eq
- [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @local_ring.to_nonzero_comm_ring ?x_371 ?x_372
- [class_instances] (9) ?x_372 : local_ring (set A) := @discrete_field.local_ring ?x_373 ?x_374
- [class_instances] (10) ?x_374 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_375 ?x_376
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_377 ?x_378
- [class_instances] (11) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @prod.nonzero_comm_ring ?x_369 ?x_370 ?x_371 ?x_372
- failed is_def_eq
- [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @euclidean_domain.to_nonzero_comm_ring ?x_373 ?x_374
- [class_instances] (9) ?x_374 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_375 ?x_376
- failed is_def_eq
- [class_instances] (9) ?x_374 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_377 ?x_378
- [class_instances] (10) ?x_378 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_378 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_378 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_379 ?x_380
- failed is_def_eq
- [class_instances] (10) ?x_378 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_378 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_381 ?x_382
- [class_instances] (11) ?x_382 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_382 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_374 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := rat.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_368 : nonzero_comm_ring (set A) := @integral_domain.to_nonzero_comm_ring ?x_369 ?x_370
- [class_instances] (9) ?x_370 : integral_domain (set A) := real.integral_domain
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @polynomial.integral_domain ?x_371 ?x_372
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_373 ?x_374 ?x_375 ?x_376
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @subring.domain ?x_377 ?x_378 ?x_379 ?x_380
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_381 ?x_382
- [class_instances] (10) ?x_382 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_383 ?x_384
- failed is_def_eq
- [class_instances] (10) ?x_382 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_385 ?x_386
- [class_instances] (11) ?x_386 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_386 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_386 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_387 ?x_388
- failed is_def_eq
- [class_instances] (11) ?x_386 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_386 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_389 ?x_390
- [class_instances] (12) ?x_390 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_390 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_382 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_371 ?x_372
- [class_instances] (10) ?x_372 : normalization_domain (set A) := @polynomial.normalization_domain ?x_373 ?x_374
- failed is_def_eq
- [class_instances] (10) ?x_372 : normalization_domain (set A) := int.normalization_domain
- failed is_def_eq
- [class_instances] (10) ?x_372 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_375 ?x_376
- [class_instances] (11) ?x_376 : gcd_domain (set A) := int.gcd_domain
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := rat.integral_domain
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @field.to_integral_domain ?x_371 ?x_372
- [class_instances] (10) ?x_372 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (10) ?x_372 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (10) ?x_372 : field (set A) := @linear_ordered_field.to_field ?x_373 ?x_374
- [class_instances] (11) ?x_374 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_374 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_374 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_375 ?x_376
- [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_372 : field (set A) := @discrete_field.to_field ?x_373 ?x_374
- [class_instances] (11) ?x_374 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_374 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_374 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_375 ?x_376
- failed is_def_eq
- [class_instances] (11) ?x_374 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_374 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_377 ?x_378
- [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_371 ?x_372 ?x_373
- [class_instances] (10) ?x_372 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_372 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_372 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_374 ?x_375
- failed is_def_eq
- [class_instances] (10) ?x_372 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_372 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_376 ?x_377
- [class_instances] (11) ?x_377 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_377 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_370 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_371 ?x_372
- [class_instances] (10) ?x_372 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_372 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_372 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_373 ?x_374
- [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_375 ?x_376 ?x_377 ?x_378
- [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (11) ?x_374 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_375 ?x_376
- [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_376 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := int.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @field.to_comm_ring ?x_345 ?x_346
- [class_instances] (8) ?x_346 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (8) ?x_346 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (8) ?x_346 : field (set A) := @linear_ordered_field.to_field ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : field (set A) := @discrete_field.to_field ?x_347 ?x_348
- [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_344 : comm_ring (set A) := @integral_domain.to_comm_ring ?x_345 ?x_346
- [class_instances] (8) ?x_346 : integral_domain (set A) := real.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @polynomial.integral_domain ?x_347 ?x_348
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_349 ?x_350 ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @subring.domain ?x_353 ?x_354 ?x_355 ?x_356
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_357 ?x_358
- [class_instances] (9) ?x_358 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_359 ?x_360
- failed is_def_eq
- [class_instances] (9) ?x_358 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_361 ?x_362
- [class_instances] (10) ?x_362 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_363 ?x_364
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_362 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_365 ?x_366
- [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_366 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_358 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_347 ?x_348
- [class_instances] (9) ?x_348 : normalization_domain (set A) := @polynomial.normalization_domain ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (9) ?x_348 : normalization_domain (set A) := int.normalization_domain
- failed is_def_eq
- [class_instances] (9) ?x_348 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_351 ?x_352
- [class_instances] (10) ?x_352 : gcd_domain (set A) := int.gcd_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := rat.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @field.to_integral_domain ?x_347 ?x_348
- [class_instances] (9) ?x_348 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
- [class_instances] (10) ?x_350 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_347 ?x_348 ?x_349
- [class_instances] (9) ?x_348 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_350 ?x_351
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_348 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_352 ?x_353
- [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_353 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_346 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_347 ?x_348
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_348 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_349 ?x_350
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352 ?x_353 ?x_354
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_350 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @decidable_linear_ordered_comm_group.to_add_comm_group ?x_335 ?x_336
- [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_336 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_337 ?x_338
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_339 ?x_340 ?x_341 ?x_342
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_339 ?x_340
- [class_instances] (8) ?x_340 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_340 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_334 : add_comm_group (set A) := @ordered_comm_group.to_add_comm_group ?x_335 ?x_336
- [class_instances] (6) ?x_336 : ordered_comm_group (set A) := real.ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @pi.ordered_comm_group ?x_337 ?x_338 ?x_339
- failed is_def_eq
- [class_instances] (6) ?x_336 : ordered_comm_group (set A) := rat.ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @order_dual.ordered_comm_group ?x_340 ?x_341
- failed is_def_eq
- [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @nonneg_comm_group.to_ordered_comm_group ?x_342 ?x_343
- [class_instances] (7) ?x_343 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_344 ?x_345
- [class_instances] (7) ?x_343 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_344 ?x_345
- [class_instances] (8) ?x_345 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_346 ?x_347
- [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @ordered_ring.to_ordered_comm_group ?x_337 ?x_338
- [class_instances] (7) ?x_338 : ordered_ring (set A) := real.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_338 : ordered_ring (set A) := rat.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_338 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_339 ?x_340
- [class_instances] (8) ?x_340 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_341 ?x_342
- [class_instances] (7) ?x_338 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_339 ?x_340
- [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_341 ?x_342
- [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_341 ?x_342
- [class_instances] (9) ?x_342 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_342 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_342 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_343 ?x_344
- [class_instances] (10) ?x_344 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_344 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_340 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_341 ?x_342
- [class_instances] (9) ?x_342 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_342 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_342 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_343 ?x_344
- [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_345 ?x_346 ?x_347 ?x_348
- [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_344 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_345 ?x_346
- [class_instances] (11) ?x_346 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_346 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_336 : ordered_comm_group (set A) := @decidable_linear_ordered_comm_group.to_ordered_comm_group ?x_337 ?x_338
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (7) ?x_338 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_339 ?x_340
- [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342 ?x_343 ?x_344
- [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342
- [class_instances] (9) ?x_342 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_342 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @quotient_group.has_coe ?x_278 ?x_279 ?x_280 ?x_281
- [class_instances] (4) ?x_279 : group (set A) := @quotient_group.group ?x_282 ?x_283 ?x_284 ?x_285
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @free_group.group ?x_286
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @linear_map.general_linear_group.group ?x_287 ?x_288 ?x_289 ?x_290 ?x_291
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @linear_map.automorphism_group ?x_292 ?x_293 ?x_294 ?x_295 ?x_296
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @prod.group ?x_297 ?x_298 ?x_299 ?x_300
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @pi.group ?x_301 ?x_302 ?x_303
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @subtype.group ?x_304 ?x_305 ?x_306 ?x_307
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @multiplicative.group ?x_308 ?x_309
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @units.group ?x_310 ?x_311
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @equiv.perm.perm_group ?x_312
- failed is_def_eq
- [class_instances] (4) ?x_279 : group (set A) := @comm_group.to_group ?x_313 ?x_314
- [class_instances] (5) ?x_314 : comm_group (set A) := @abelianization.comm_group ?x_315 ?x_316
- failed is_def_eq
- [class_instances] (5) ?x_314 : comm_group (set A) := @quotient_group.comm_group ?x_317 ?x_318 ?x_319 ?x_320
- failed is_def_eq
- [class_instances] (5) ?x_314 : comm_group (set A) := @prod.comm_group ?x_321 ?x_322 ?x_323 ?x_324
- failed is_def_eq
- [class_instances] (5) ?x_314 : comm_group (set A) := @pi.comm_group ?x_325 ?x_326 ?x_327
- failed is_def_eq
- [class_instances] (5) ?x_314 : comm_group (set A) := @subtype.comm_group ?x_328 ?x_329 ?x_330 ?x_331
- failed is_def_eq
- [class_instances] (5) ?x_314 : comm_group (set A) := @multiplicative.comm_group ?x_332 ?x_333
- failed is_def_eq
- [class_instances] (5) ?x_314 : comm_group (set A) := @monoid_hom.comm_group ?x_334 ?x_335 ?x_336 ?x_337
- failed is_def_eq
- [class_instances] (5) ?x_314 : comm_group (set A) := @units.comm_group ?x_338 ?x_339
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := enat.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := nat.primes.coe_pnat
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := coe_pnat_nat
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := nat.primes.coe_nat
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @pfun.has_coe ?x_278 ?x_279
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @roption.has_coe ?x_280
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @multiset.has_coe ?x_281
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := fin.fin_to_nat ?x_282
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @add_monoid_hom.has_coe ?x_283 ?x_284 ?x_285 ?x_286
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @monoid_hom.has_coe ?x_287 ?x_288 ?x_289 ?x_290
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @units.has_coe ?x_291 ?x_292
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := int.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @list.bin_tree_to_list ?x_293
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := smt_tactic.has_coe ?x_294
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @lean.parser.has_coe ?x_295
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @tactic.ex_to_tac ?x_296
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @tactic.opt_to_tac ?x_297
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @expr.has_coe ?x_298 ?x_299
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := string_to_format
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := nat_to_format
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := string_to_name
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @coe_subtype ?x_300 ?x_301
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := coe_bool_to_Prop
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @znum_coe ?x_302 ?x_303 ?x_304 ?x_305 ?x_306
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @num_nat_coe ?x_307 ?x_308 ?x_309 ?x_310
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @pos_num_coe ?x_311 ?x_312 ?x_313 ?x_314
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @rat.cast_coe ?x_315 ?x_316
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @int.cast_coe ?x_317 ?x_318 ?x_319 ?x_320 ?x_321
- failed is_def_eq
- [class_instances] (3) ?x_277 : has_coe (set A) ?x_276 := @nat.cast_coe ?x_322 ?x_323 ?x_324 ?x_325
- failed is_def_eq
- [class_instances] (2) ?x_273 : has_coe_t_aux (set A) ?x_272 := @coe_trans_aux ?x_275 ?x_276 ?x_277 ?x_278 ?x_279
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @lean.parser.has_coe' ?x_280
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @subalgebra.coe_to_submodule ?x_281 ?x_282 ?x_283 ?x_284 ?x_285
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @subalgebra.has_coe ?x_286 ?x_287 ?x_288 ?x_289 ?x_290
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := complex.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := tactic.abel.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := int.snum_coe
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := snum.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := tactic.ring.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @linear_equiv.has_coe ?x_291 ?x_292 ?x_293 ?x_294 ?x_295 ?x_296 ?x_297 ?x_298
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @order_iso.has_coe ?x_299 ?x_300 ?x_301 ?x_302
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @submodule.has_coe ?x_303 ?x_304 ?x_305 ?x_306 ?x_307
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @quotient_add_group.has_coe ?x_308 ?x_309 ?x_310 ?x_311
- [class_instances] (4) ?x_309 : add_group (set A) := @dfinsupp.add_group ?x_312 ?x_313 ?x_314
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := @quotient_add_group.add_group ?x_315 ?x_316 ?x_317 ?x_318
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := real.add_group
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := @prod.add_group ?x_319 ?x_320 ?x_321 ?x_322
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := @pi.add_group ?x_323 ?x_324 ?x_325
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := @finsupp.add_group ?x_326 ?x_327 ?x_328
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := @subtype.add_group ?x_329 ?x_330 ?x_331 ?x_332
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := rat.add_group
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := @additive.add_group ?x_333 ?x_334
- failed is_def_eq
- [class_instances] (4) ?x_309 : add_group (set A) := @add_comm_group.to_add_group ?x_335 ?x_336
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @tensor_product.add_comm_group ?x_337 ?x_338 ?x_339 ?x_340 ?x_341 ?x_342 ?x_343 ?x_344
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @direct_sum.add_comm_group ?x_345 ?x_346 ?x_347 ?x_348
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @dfinsupp.add_comm_group ?x_349 ?x_350 ?x_351
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := free_abelian_group.add_comm_group ?x_352
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @quotient_add_group.add_comm_group ?x_353 ?x_354 ?x_355 ?x_356
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := real.add_comm_group
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @submodule.quotient.add_comm_group ?x_357 ?x_358 ?x_359 ?x_360 ?x_361 ?x_362
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @linear_map.add_comm_group ?x_363 ?x_364 ?x_365 ?x_366 ?x_367 ?x_368 ?x_369 ?x_370
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @prod.add_comm_group ?x_371 ?x_372 ?x_373 ?x_374
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @pi.add_comm_group ?x_375 ?x_376 ?x_377
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @finsupp.add_comm_group ?x_378 ?x_379 ?x_380
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @submodule.add_comm_group ?x_381 ?x_382 ?x_383 ?x_384 ?x_385 ?x_386
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @subtype.add_comm_group ?x_387 ?x_388 ?x_389 ?x_390
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := rat.add_comm_group
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @nonneg_comm_group.to_add_comm_group ?x_391 ?x_392
- [class_instances] (6) ?x_392 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_393 ?x_394
- [class_instances] (6) ?x_392 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_393 ?x_394
- [class_instances] (7) ?x_394 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_395 ?x_396
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @additive.add_comm_group ?x_337 ?x_338
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @add_monoid_hom.add_comm_group ?x_339 ?x_340 ?x_341 ?x_342
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @ring.to_add_comm_group ?x_343 ?x_344
- [class_instances] (6) ?x_344 : ring (set A) := @subalgebra.ring ?x_345 ?x_346 ?x_347 ?x_348 ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @algebra.comap.ring ?x_351 ?x_352 ?x_353 ?x_354 ?x_355 ?x_356 ?x_357 ?x_358
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @free_abelian_group.ring ?x_359 ?x_360
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := real.ring
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @cau_seq.ring ?x_361 ?x_362 ?x_363 ?x_364 ?x_365 ?x_366
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.polynomial_ring2 ?x_367 ?x_368 ?x_369
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.polynomial_ring ?x_370 ?x_371 ?x_372
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.option_ring ?x_373 ?x_374 ?x_375
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.ring_on_iter ?x_376 ?x_377 ?x_378 ?x_379
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.ring_on_sum ?x_380 ?x_381 ?x_382 ?x_383
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @mv_polynomial.ring ?x_384 ?x_385 ?x_386
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @linear_map.endomorphism_ring ?x_387 ?x_388 ?x_389 ?x_390 ?x_391
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @prod.ring ?x_392 ?x_393 ?x_394 ?x_395
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @pi.ring ?x_396 ?x_397 ?x_398
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @subtype.ring ?x_399 ?x_400 ?x_401 ?x_402
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @subset.ring ?x_403 ?x_404 ?x_405 ?x_406
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @finsupp.ring ?x_407 ?x_408 ?x_409 ?x_410
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @nonneg_ring.to_ring ?x_411 ?x_412
- [class_instances] (7) ?x_412 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_413 ?x_414
- [class_instances] (6) ?x_344 : ring (set A) := @domain.to_ring ?x_345 ?x_346
- [class_instances] (7) ?x_346 : domain (set A) := real.domain
- failed is_def_eq
- [class_instances] (7) ?x_346 : domain (set A) := @division_ring.to_domain ?x_347 ?x_348
- [class_instances] (8) ?x_348 : division_ring (set A) := real.division_ring
- failed is_def_eq
- [class_instances] (8) ?x_348 : division_ring (set A) := rat.division_ring
- failed is_def_eq
- [class_instances] (8) ?x_348 : division_ring (set A) := @field.to_division_ring ?x_349 ?x_350
- [class_instances] (9) ?x_350 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := @linear_ordered_field.to_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := @discrete_field.to_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_353 ?x_354
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_355 ?x_356
- [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_346 : domain (set A) := @linear_nonneg_ring.to_domain ?x_347 ?x_348
- [class_instances] (7) ?x_346 : domain (set A) := @to_domain ?x_347 ?x_348
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_349 ?x_350
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_346 : domain (set A) := @integral_domain.to_domain ?x_347 ?x_348
- [class_instances] (8) ?x_348 : integral_domain (set A) := real.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @polynomial.integral_domain ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_351 ?x_352 ?x_353 ?x_354
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @subring.domain ?x_355 ?x_356 ?x_357 ?x_358
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_359 ?x_360
- [class_instances] (9) ?x_360 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_361 ?x_362
- failed is_def_eq
- [class_instances] (9) ?x_360 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_363 ?x_364
- [class_instances] (10) ?x_364 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_365 ?x_366
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_367 ?x_368
- [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_360 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_349 ?x_350
- [class_instances] (9) ?x_350 : normalization_domain (set A) := @polynomial.normalization_domain ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (9) ?x_350 : normalization_domain (set A) := int.normalization_domain
- failed is_def_eq
- [class_instances] (9) ?x_350 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_353 ?x_354
- [class_instances] (10) ?x_354 : gcd_domain (set A) := int.gcd_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := rat.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @field.to_integral_domain ?x_349 ?x_350
- [class_instances] (9) ?x_350 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := @linear_ordered_field.to_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := @discrete_field.to_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_353 ?x_354
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_355 ?x_356
- [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_349 ?x_350 ?x_351
- [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_352 ?x_353
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_354 ?x_355
- [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := int.ring
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @division_ring.to_ring ?x_345 ?x_346
- [class_instances] (7) ?x_346 : division_ring (set A) := real.division_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : division_ring (set A) := rat.division_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : division_ring (set A) := @field.to_division_ring ?x_347 ?x_348
- [class_instances] (8) ?x_348 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (8) ?x_348 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (8) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
- [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
- [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @ordered_ring.to_ring ?x_345 ?x_346
- [class_instances] (7) ?x_346 : ordered_ring (set A) := real.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : ordered_ring (set A) := rat.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_347 ?x_348
- [class_instances] (8) ?x_348 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_349 ?x_350
- [class_instances] (7) ?x_346 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_347 ?x_348
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_349 ?x_350
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_344 : ring (set A) := @comm_ring.to_ring ?x_345 ?x_346
- [class_instances] (7) ?x_346 : comm_ring (set A) := _inst_1
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @subalgebra.comm_ring ?x_347 ?x_348 ?x_349 ?x_350 ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @algebra.comap.comm_ring ?x_353 ?x_354 ?x_355 ?x_356 ?x_357 ?x_358 ?x_359 ?x_360
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @free_abelian_group.comm_ring ?x_361 ?x_362
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := complex.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := real.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @cau_seq.completion.comm_ring ?x_363 ?x_364 ?x_365 ?x_366 ?x_367 ?x_368
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @cau_seq.comm_ring ?x_369 ?x_370 ?x_371 ?x_372 ?x_373 ?x_374
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @mv_polynomial.comm_ring ?x_375 ?x_376 ?x_377
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @polynomial.comm_ring ?x_378 ?x_379
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @local_ring.comm_ring ?x_380 ?x_381
- [class_instances] (8) ?x_381 : local_ring (set A) := @discrete_field.local_ring ?x_382 ?x_383
- [class_instances] (9) ?x_383 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_383 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_383 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_384 ?x_385
- failed is_def_eq
- [class_instances] (9) ?x_383 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_383 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_386 ?x_387
- [class_instances] (10) ?x_387 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_387 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @ideal.quotient.comm_ring ?x_347 ?x_348 ?x_349
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @prod.comm_ring ?x_350 ?x_351 ?x_352 ?x_353
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @pi.comm_ring ?x_354 ?x_355 ?x_356
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @subtype.comm_ring ?x_357 ?x_358 ?x_359 ?x_360
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @subset.comm_ring ?x_361 ?x_362 ?x_363 ?x_364
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @finsupp.comm_ring ?x_365 ?x_366 ?x_367 ?x_368
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := rat.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @nonzero_comm_ring.to_comm_ring ?x_369 ?x_370
- [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := real.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @polynomial.nonzero_comm_ring ?x_371 ?x_372
- failed is_def_eq
- [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @local_ring.to_nonzero_comm_ring ?x_373 ?x_374
- [class_instances] (9) ?x_374 : local_ring (set A) := @discrete_field.local_ring ?x_375 ?x_376
- [class_instances] (10) ?x_376 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_376 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_376 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_377 ?x_378
- failed is_def_eq
- [class_instances] (10) ?x_376 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_376 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_379 ?x_380
- [class_instances] (11) ?x_380 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_380 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @prod.nonzero_comm_ring ?x_371 ?x_372 ?x_373 ?x_374
- failed is_def_eq
- [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @euclidean_domain.to_nonzero_comm_ring ?x_375 ?x_376
- [class_instances] (9) ?x_376 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_377 ?x_378
- failed is_def_eq
- [class_instances] (9) ?x_376 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_379 ?x_380
- [class_instances] (10) ?x_380 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_380 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_380 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_381 ?x_382
- failed is_def_eq
- [class_instances] (10) ?x_380 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_380 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_383 ?x_384
- [class_instances] (11) ?x_384 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_384 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_376 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := rat.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_370 : nonzero_comm_ring (set A) := @integral_domain.to_nonzero_comm_ring ?x_371 ?x_372
- [class_instances] (9) ?x_372 : integral_domain (set A) := real.integral_domain
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @polynomial.integral_domain ?x_373 ?x_374
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_375 ?x_376 ?x_377 ?x_378
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @subring.domain ?x_379 ?x_380 ?x_381 ?x_382
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_383 ?x_384
- [class_instances] (10) ?x_384 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_385 ?x_386
- failed is_def_eq
- [class_instances] (10) ?x_384 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_387 ?x_388
- [class_instances] (11) ?x_388 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_388 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_388 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_389 ?x_390
- failed is_def_eq
- [class_instances] (11) ?x_388 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_388 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_391 ?x_392
- [class_instances] (12) ?x_392 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_392 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_384 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_373 ?x_374
- [class_instances] (10) ?x_374 : normalization_domain (set A) := @polynomial.normalization_domain ?x_375 ?x_376
- failed is_def_eq
- [class_instances] (10) ?x_374 : normalization_domain (set A) := int.normalization_domain
- failed is_def_eq
- [class_instances] (10) ?x_374 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_377 ?x_378
- [class_instances] (11) ?x_378 : gcd_domain (set A) := int.gcd_domain
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := rat.integral_domain
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @field.to_integral_domain ?x_373 ?x_374
- [class_instances] (10) ?x_374 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (10) ?x_374 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (10) ?x_374 : field (set A) := @linear_ordered_field.to_field ?x_375 ?x_376
- [class_instances] (11) ?x_376 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_376 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_376 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_377 ?x_378
- [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_374 : field (set A) := @discrete_field.to_field ?x_375 ?x_376
- [class_instances] (11) ?x_376 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_376 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_376 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_377 ?x_378
- failed is_def_eq
- [class_instances] (11) ?x_376 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (11) ?x_376 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_379 ?x_380
- [class_instances] (12) ?x_380 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_380 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_373 ?x_374 ?x_375
- [class_instances] (10) ?x_374 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_376 ?x_377
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_374 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_378 ?x_379
- [class_instances] (11) ?x_379 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_379 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_372 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_373 ?x_374
- [class_instances] (10) ?x_374 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_374 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_374 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_375 ?x_376
- [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_377 ?x_378 ?x_379 ?x_380
- [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (11) ?x_376 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_377 ?x_378
- [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (12) ?x_378 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := int.comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @field.to_comm_ring ?x_347 ?x_348
- [class_instances] (8) ?x_348 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (8) ?x_348 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (8) ?x_348 : field (set A) := @linear_ordered_field.to_field ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : field (set A) := @discrete_field.to_field ?x_349 ?x_350
- [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_353 ?x_354
- [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_346 : comm_ring (set A) := @integral_domain.to_comm_ring ?x_347 ?x_348
- [class_instances] (8) ?x_348 : integral_domain (set A) := real.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @polynomial.integral_domain ?x_349 ?x_350
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @ideal.quotient.integral_domain ?x_351 ?x_352 ?x_353 ?x_354
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @subring.domain ?x_355 ?x_356 ?x_357 ?x_358
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @euclidean_domain.integral_domain ?x_359 ?x_360
- [class_instances] (9) ?x_360 : euclidean_domain (set A) := @polynomial.euclidean_domain ?x_361 ?x_362
- failed is_def_eq
- [class_instances] (9) ?x_360 : euclidean_domain (set A) := @discrete_field.to_euclidean_domain ?x_363 ?x_364
- [class_instances] (10) ?x_364 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_365 ?x_366
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_364 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_367 ?x_368
- [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_368 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_360 : euclidean_domain (set A) := int.euclidean_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @normalization_domain.to_integral_domain ?x_349 ?x_350
- [class_instances] (9) ?x_350 : normalization_domain (set A) := @polynomial.normalization_domain ?x_351 ?x_352
- failed is_def_eq
- [class_instances] (9) ?x_350 : normalization_domain (set A) := int.normalization_domain
- failed is_def_eq
- [class_instances] (9) ?x_350 : normalization_domain (set A) := @gcd_domain.to_normalization_domain ?x_353 ?x_354
- [class_instances] (10) ?x_354 : gcd_domain (set A) := int.gcd_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := rat.integral_domain
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @field.to_integral_domain ?x_349 ?x_350
- [class_instances] (9) ?x_350 : field (set A) := real.field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := rat.field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := @linear_ordered_field.to_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : field (set A) := @discrete_field.to_field ?x_351 ?x_352
- [class_instances] (10) ?x_352 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_353 ?x_354
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (10) ?x_352 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_355 ?x_356
- [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_356 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @discrete_field.to_integral_domain ?x_349 ?x_350 ?x_351
- [class_instances] (9) ?x_350 : discrete_field (set A) := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @local_ring.residue_field.discrete_field ?x_352 ?x_353
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_350 : discrete_field (set A) := @discrete_linear_ordered_field.to_discrete_field ?x_354 ?x_355
- [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_355 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_348 : integral_domain (set A) := @linear_ordered_comm_ring.to_integral_domain ?x_349 ?x_350
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_350 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_351 ?x_352
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354 ?x_355 ?x_356
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_352 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_353 ?x_354
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_354 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @decidable_linear_ordered_comm_group.to_add_comm_group ?x_337 ?x_338
- [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_338 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_339 ?x_340
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342 ?x_343 ?x_344
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_341 ?x_342
- [class_instances] (8) ?x_342 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_342 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_336 : add_comm_group (set A) := @ordered_comm_group.to_add_comm_group ?x_337 ?x_338
- [class_instances] (6) ?x_338 : ordered_comm_group (set A) := real.ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @pi.ordered_comm_group ?x_339 ?x_340 ?x_341
- failed is_def_eq
- [class_instances] (6) ?x_338 : ordered_comm_group (set A) := rat.ordered_comm_group
- failed is_def_eq
- [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @order_dual.ordered_comm_group ?x_342 ?x_343
- failed is_def_eq
- [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @nonneg_comm_group.to_ordered_comm_group ?x_344 ?x_345
- [class_instances] (7) ?x_345 : nonneg_comm_group (set A) := @linear_nonneg_ring.to_nonneg_comm_group ?x_346 ?x_347
- [class_instances] (7) ?x_345 : nonneg_comm_group (set A) := @nonneg_ring.to_nonneg_comm_group ?x_346 ?x_347
- [class_instances] (8) ?x_347 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_348 ?x_349
- [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @ordered_ring.to_ordered_comm_group ?x_339 ?x_340
- [class_instances] (7) ?x_340 : ordered_ring (set A) := real.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_340 : ordered_ring (set A) := rat.ordered_ring
- failed is_def_eq
- [class_instances] (7) ?x_340 : ordered_ring (set A) := @nonneg_ring.to_ordered_ring ?x_341 ?x_342
- [class_instances] (8) ?x_342 : nonneg_ring (set A) := @linear_nonneg_ring.to_nonneg_ring ?x_343 ?x_344
- [class_instances] (7) ?x_340 : ordered_ring (set A) := @linear_ordered_ring.to_ordered_ring ?x_341 ?x_342
- [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := @linear_nonneg_ring.to_linear_ordered_ring ?x_343 ?x_344
- [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := @linear_ordered_field.to_linear_ordered_ring ?x_343 ?x_344
- [class_instances] (9) ?x_344 : linear_ordered_field (set A) := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_344 : linear_ordered_field (set A) := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_344 : linear_ordered_field (set A) := @discrete_linear_ordered_field.to_linear_ordered_field ?x_345 ?x_346
- [class_instances] (10) ?x_346 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_346 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_342 : linear_ordered_ring (set A) := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_343 ?x_344
- [class_instances] (9) ?x_344 : linear_ordered_comm_ring (set A) := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_344 : linear_ordered_comm_ring (set A) := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_344 : linear_ordered_comm_ring (set A) := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_345 ?x_346
- [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_347 ?x_348 ?x_349 ?x_350
- [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (10) ?x_346 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_347 ?x_348
- [class_instances] (11) ?x_348 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (11) ?x_348 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_338 : ordered_comm_group (set A) := @decidable_linear_ordered_comm_group.to_ordered_comm_group ?x_339 ?x_340
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := real.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := rat.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := int.decidable_linear_ordered_comm_group
- failed is_def_eq
- [class_instances] (7) ?x_340 : decidable_linear_ordered_comm_group (set A) := @decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group ?x_341 ?x_342
- [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_343 ?x_344 ?x_345 ?x_346
- [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_342 : decidable_linear_ordered_comm_ring (set A) := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_343 ?x_344
- [class_instances] (9) ?x_344 : discrete_linear_ordered_field (set A) := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_344 : discrete_linear_ordered_field (set A) := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @quotient_group.has_coe ?x_280 ?x_281 ?x_282 ?x_283
- [class_instances] (4) ?x_281 : group (set A) := @quotient_group.group ?x_284 ?x_285 ?x_286 ?x_287
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @free_group.group ?x_288
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @linear_map.general_linear_group.group ?x_289 ?x_290 ?x_291 ?x_292 ?x_293
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @linear_map.automorphism_group ?x_294 ?x_295 ?x_296 ?x_297 ?x_298
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @prod.group ?x_299 ?x_300 ?x_301 ?x_302
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @pi.group ?x_303 ?x_304 ?x_305
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @subtype.group ?x_306 ?x_307 ?x_308 ?x_309
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @multiplicative.group ?x_310 ?x_311
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @units.group ?x_312 ?x_313
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @equiv.perm.perm_group ?x_314
- failed is_def_eq
- [class_instances] (4) ?x_281 : group (set A) := @comm_group.to_group ?x_315 ?x_316
- [class_instances] (5) ?x_316 : comm_group (set A) := @abelianization.comm_group ?x_317 ?x_318
- failed is_def_eq
- [class_instances] (5) ?x_316 : comm_group (set A) := @quotient_group.comm_group ?x_319 ?x_320 ?x_321 ?x_322
- failed is_def_eq
- [class_instances] (5) ?x_316 : comm_group (set A) := @prod.comm_group ?x_323 ?x_324 ?x_325 ?x_326
- failed is_def_eq
- [class_instances] (5) ?x_316 : comm_group (set A) := @pi.comm_group ?x_327 ?x_328 ?x_329
- failed is_def_eq
- [class_instances] (5) ?x_316 : comm_group (set A) := @subtype.comm_group ?x_330 ?x_331 ?x_332 ?x_333
- failed is_def_eq
- [class_instances] (5) ?x_316 : comm_group (set A) := @multiplicative.comm_group ?x_334 ?x_335
- failed is_def_eq
- [class_instances] (5) ?x_316 : comm_group (set A) := @monoid_hom.comm_group ?x_336 ?x_337 ?x_338 ?x_339
- failed is_def_eq
- [class_instances] (5) ?x_316 : comm_group (set A) := @units.comm_group ?x_340 ?x_341
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := enat.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := nat.primes.coe_pnat
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := coe_pnat_nat
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := nat.primes.coe_nat
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @pfun.has_coe ?x_280 ?x_281
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @roption.has_coe ?x_282
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @multiset.has_coe ?x_283
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := fin.fin_to_nat ?x_284
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @add_monoid_hom.has_coe ?x_285 ?x_286 ?x_287 ?x_288
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @monoid_hom.has_coe ?x_289 ?x_290 ?x_291 ?x_292
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @units.has_coe ?x_293 ?x_294
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := int.has_coe
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @list.bin_tree_to_list ?x_295
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := smt_tactic.has_coe ?x_296
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @lean.parser.has_coe ?x_297
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @tactic.ex_to_tac ?x_298
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @tactic.opt_to_tac ?x_299
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @expr.has_coe ?x_300 ?x_301
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := string_to_format
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := nat_to_format
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := string_to_name
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @coe_subtype ?x_302 ?x_303
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := coe_bool_to_Prop
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @znum_coe ?x_304 ?x_305 ?x_306 ?x_307 ?x_308
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @num_nat_coe ?x_309 ?x_310 ?x_311 ?x_312
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @pos_num_coe ?x_313 ?x_314 ?x_315 ?x_316
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @rat.cast_coe ?x_317 ?x_318
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @int.cast_coe ?x_319 ?x_320 ?x_321 ?x_322 ?x_323
- failed is_def_eq
- [class_instances] (3) ?x_278 : has_coe (set A) ?x_276 := @nat.cast_coe ?x_324 ?x_325 ?x_326 ?x_327
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @subalgebra.comm_ring ?x_205 ?x_206 ?x_207 ?x_208 ?x_209 ?x_210
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @algebra.comap.comm_ring ?x_211 ?x_212 ?x_213 ?x_214 ?x_215 ?x_216 ?x_217 ?x_218
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @free_abelian_group.comm_ring ?x_219 ?x_220
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := complex.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := real.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @cau_seq.completion.comm_ring ?x_221 ?x_222 ?x_223 ?x_224 ?x_225 ?x_226
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @cau_seq.comm_ring ?x_227 ?x_228 ?x_229 ?x_230 ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @mv_polynomial.comm_ring ?x_233 ?x_234 ?x_235
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @polynomial.comm_ring ?x_236 ?x_237
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @local_ring.comm_ring ?x_238 ?x_239
- [class_instances] (6) ?x_239 : local_ring A := @discrete_field.local_ring ?x_240 ?x_241
- [class_instances] (7) ?x_241 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_241 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_241 : discrete_field A := @local_ring.residue_field.discrete_field ?x_242 ?x_243
- failed is_def_eq
- [class_instances] (7) ?x_241 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_241 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_244 ?x_245
- [class_instances] (8) ?x_245 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_245 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @ideal.quotient.comm_ring ?x_205 ?x_206 ?x_207
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @prod.comm_ring ?x_208 ?x_209 ?x_210 ?x_211
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @pi.comm_ring ?x_212 ?x_213 ?x_214
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @subtype.comm_ring ?x_215 ?x_216 ?x_217 ?x_218
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @subset.comm_ring ?x_219 ?x_220 ?x_221 ?x_222
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @finsupp.comm_ring ?x_223 ?x_224 ?x_225 ?x_226
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := rat.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @nonzero_comm_ring.to_comm_ring ?x_227 ?x_228
- [class_instances] (6) ?x_228 : nonzero_comm_ring A := real.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (6) ?x_228 : nonzero_comm_ring A := @polynomial.nonzero_comm_ring ?x_229 ?x_230
- failed is_def_eq
- [class_instances] (6) ?x_228 : nonzero_comm_ring A := @local_ring.to_nonzero_comm_ring ?x_231 ?x_232
- [class_instances] (7) ?x_232 : local_ring A := @discrete_field.local_ring ?x_233 ?x_234
- [class_instances] (8) ?x_234 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_234 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_234 : discrete_field A := @local_ring.residue_field.discrete_field ?x_235 ?x_236
- failed is_def_eq
- [class_instances] (8) ?x_234 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_234 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_237 ?x_238
- [class_instances] (9) ?x_238 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_238 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_228 : nonzero_comm_ring A := @prod.nonzero_comm_ring ?x_229 ?x_230 ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (6) ?x_228 : nonzero_comm_ring A := @euclidean_domain.to_nonzero_comm_ring ?x_233 ?x_234
- [class_instances] (7) ?x_234 : euclidean_domain A := @polynomial.euclidean_domain ?x_235 ?x_236
- failed is_def_eq
- [class_instances] (7) ?x_234 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_237 ?x_238
- [class_instances] (8) ?x_238 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_238 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_238 : discrete_field A := @local_ring.residue_field.discrete_field ?x_239 ?x_240
- failed is_def_eq
- [class_instances] (8) ?x_238 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_238 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_241 ?x_242
- [class_instances] (9) ?x_242 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_242 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_234 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (6) ?x_228 : nonzero_comm_ring A := rat.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (6) ?x_228 : nonzero_comm_ring A := @integral_domain.to_nonzero_comm_ring ?x_229 ?x_230
- [class_instances] (7) ?x_230 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @polynomial.integral_domain ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @ideal.quotient.integral_domain ?x_233 ?x_234 ?x_235 ?x_236
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @subring.domain ?x_237 ?x_238 ?x_239 ?x_240
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @euclidean_domain.integral_domain ?x_241 ?x_242
- [class_instances] (8) ?x_242 : euclidean_domain A := @polynomial.euclidean_domain ?x_243 ?x_244
- failed is_def_eq
- [class_instances] (8) ?x_242 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_245 ?x_246
- [class_instances] (9) ?x_246 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_246 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_246 : discrete_field A := @local_ring.residue_field.discrete_field ?x_247 ?x_248
- failed is_def_eq
- [class_instances] (9) ?x_246 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_246 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_249 ?x_250
- [class_instances] (10) ?x_250 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_250 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_242 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @normalization_domain.to_integral_domain ?x_231 ?x_232
- [class_instances] (8) ?x_232 : normalization_domain A := @polynomial.normalization_domain ?x_233 ?x_234
- failed is_def_eq
- [class_instances] (8) ?x_232 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (8) ?x_232 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_235 ?x_236
- [class_instances] (9) ?x_236 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @field.to_integral_domain ?x_231 ?x_232
- [class_instances] (8) ?x_232 : field A := real.field
- failed is_def_eq
- [class_instances] (8) ?x_232 : field A := rat.field
- failed is_def_eq
- [class_instances] (8) ?x_232 : field A := @linear_ordered_field.to_field ?x_233 ?x_234
- [class_instances] (9) ?x_234 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_234 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_234 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_235 ?x_236
- [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_232 : field A := @discrete_field.to_field ?x_233 ?x_234
- [class_instances] (9) ?x_234 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_234 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_234 : discrete_field A := @local_ring.residue_field.discrete_field ?x_235 ?x_236
- failed is_def_eq
- [class_instances] (9) ?x_234 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_234 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_237 ?x_238
- [class_instances] (10) ?x_238 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_238 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @discrete_field.to_integral_domain ?x_231 ?x_232 ?x_233
- [class_instances] (8) ?x_232 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_232 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_232 : discrete_field A := @local_ring.residue_field.discrete_field ?x_234 ?x_235
- failed is_def_eq
- [class_instances] (8) ?x_232 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_232 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_236 ?x_237
- [class_instances] (9) ?x_237 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_237 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_230 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_231 ?x_232
- [class_instances] (8) ?x_232 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_232 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_232 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_233 ?x_234
- [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_235 ?x_236 ?x_237 ?x_238
- [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_234 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_235 ?x_236
- [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_236 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := int.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @field.to_comm_ring ?x_205 ?x_206
- [class_instances] (6) ?x_206 : field A := real.field
- failed is_def_eq
- [class_instances] (6) ?x_206 : field A := rat.field
- failed is_def_eq
- [class_instances] (6) ?x_206 : field A := @linear_ordered_field.to_field ?x_207 ?x_208
- [class_instances] (7) ?x_208 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_209 ?x_210
- [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_206 : field A := @discrete_field.to_field ?x_207 ?x_208
- [class_instances] (7) ?x_208 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := @local_ring.residue_field.discrete_field ?x_209 ?x_210
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_211 ?x_212
- [class_instances] (8) ?x_212 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_212 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_203 : comm_ring A := @integral_domain.to_comm_ring ?x_205 ?x_206
- [class_instances] (6) ?x_206 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @polynomial.integral_domain ?x_207 ?x_208
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @ideal.quotient.integral_domain ?x_209 ?x_210 ?x_211 ?x_212
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @subring.domain ?x_213 ?x_214 ?x_215 ?x_216
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @euclidean_domain.integral_domain ?x_217 ?x_218
- [class_instances] (7) ?x_218 : euclidean_domain A := @polynomial.euclidean_domain ?x_219 ?x_220
- failed is_def_eq
- [class_instances] (7) ?x_218 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_221 ?x_222
- [class_instances] (8) ?x_222 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_222 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_222 : discrete_field A := @local_ring.residue_field.discrete_field ?x_223 ?x_224
- failed is_def_eq
- [class_instances] (8) ?x_222 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_222 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_225 ?x_226
- [class_instances] (9) ?x_226 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_226 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_218 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @normalization_domain.to_integral_domain ?x_207 ?x_208
- [class_instances] (7) ?x_208 : normalization_domain A := @polynomial.normalization_domain ?x_209 ?x_210
- failed is_def_eq
- [class_instances] (7) ?x_208 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (7) ?x_208 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_211 ?x_212
- [class_instances] (8) ?x_212 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @field.to_integral_domain ?x_207 ?x_208
- [class_instances] (7) ?x_208 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_208 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_208 : field A := @linear_ordered_field.to_field ?x_209 ?x_210
- [class_instances] (8) ?x_210 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_211 ?x_212
- [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : field A := @discrete_field.to_field ?x_209 ?x_210
- [class_instances] (8) ?x_210 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : discrete_field A := @local_ring.residue_field.discrete_field ?x_211 ?x_212
- failed is_def_eq
- [class_instances] (8) ?x_210 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_213 ?x_214
- [class_instances] (9) ?x_214 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_214 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @discrete_field.to_integral_domain ?x_207 ?x_208 ?x_209
- [class_instances] (7) ?x_208 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := @local_ring.residue_field.discrete_field ?x_210 ?x_211
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_208 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_212 ?x_213
- [class_instances] (8) ?x_213 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_213 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_206 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_207 ?x_208
- [class_instances] (7) ?x_208 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_208 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_208 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_209 ?x_210
- [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_211 ?x_212 ?x_213 ?x_214
- [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_210 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_211 ?x_212
- [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_212 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @algebra.id ?x_202 ?x_203
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @subalgebra.to_algebra ?x_204 ?x_205 ?x_206 ?x_207 ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @subalgebra.algebra ?x_210 ?x_211 ?x_212 ?x_213 ?x_214 ?x_215
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := complex.algebra_over_reals
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @algebra.comap.algebra ?x_216 ?x_217 ?x_218 ?x_219 ?x_220 ?x_221 ?x_222 ?x_223
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @algebra.of_subring ?x_224 ?x_225 ?x_226 ?x_227
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @algebra.mv_polynomial ?x_228 ?x_229 ?x_230 ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (4) ?x_135 : @algebra ℤ A (@nonzero_comm_ring.to_comm_ring ℤ (@euclidean_domain.to_nonzero_comm_ring ℤ int.euclidean_domain))
- (@comm_ring.to_ring A _inst_1) := @algebra.polynomial ?x_233 ?x_234 ?x_235
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @subalgebra.comm_ring ?x_202 ?x_203 ?x_204 ?x_205 ?x_206 ?x_207
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @algebra.comap.comm_ring ?x_208 ?x_209 ?x_210 ?x_211 ?x_212 ?x_213 ?x_214 ?x_215
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @free_abelian_group.comm_ring ?x_216 ?x_217
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := complex.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := real.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @cau_seq.completion.comm_ring ?x_218 ?x_219 ?x_220 ?x_221 ?x_222 ?x_223
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @cau_seq.comm_ring ?x_224 ?x_225 ?x_226 ?x_227 ?x_228 ?x_229
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @mv_polynomial.comm_ring ?x_230 ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @polynomial.comm_ring ?x_233 ?x_234
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @local_ring.comm_ring ?x_235 ?x_236
- [class_instances] (6) ?x_236 : local_ring A := @discrete_field.local_ring ?x_237 ?x_238
- [class_instances] (7) ?x_238 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_238 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_238 : discrete_field A := @local_ring.residue_field.discrete_field ?x_239 ?x_240
- failed is_def_eq
- [class_instances] (7) ?x_238 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_238 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_241 ?x_242
- [class_instances] (8) ?x_242 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_242 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @ideal.quotient.comm_ring ?x_202 ?x_203 ?x_204
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @prod.comm_ring ?x_205 ?x_206 ?x_207 ?x_208
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @pi.comm_ring ?x_209 ?x_210 ?x_211
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @subtype.comm_ring ?x_212 ?x_213 ?x_214 ?x_215
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @subset.comm_ring ?x_216 ?x_217 ?x_218 ?x_219
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @finsupp.comm_ring ?x_220 ?x_221 ?x_222 ?x_223
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := rat.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @nonzero_comm_ring.to_comm_ring ?x_224 ?x_225
- [class_instances] (6) ?x_225 : nonzero_comm_ring A := real.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (6) ?x_225 : nonzero_comm_ring A := @polynomial.nonzero_comm_ring ?x_226 ?x_227
- failed is_def_eq
- [class_instances] (6) ?x_225 : nonzero_comm_ring A := @local_ring.to_nonzero_comm_ring ?x_228 ?x_229
- [class_instances] (7) ?x_229 : local_ring A := @discrete_field.local_ring ?x_230 ?x_231
- [class_instances] (8) ?x_231 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_231 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_231 : discrete_field A := @local_ring.residue_field.discrete_field ?x_232 ?x_233
- failed is_def_eq
- [class_instances] (8) ?x_231 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_231 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_234 ?x_235
- [class_instances] (9) ?x_235 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_235 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_225 : nonzero_comm_ring A := @prod.nonzero_comm_ring ?x_226 ?x_227 ?x_228 ?x_229
- failed is_def_eq
- [class_instances] (6) ?x_225 : nonzero_comm_ring A := @euclidean_domain.to_nonzero_comm_ring ?x_230 ?x_231
- [class_instances] (7) ?x_231 : euclidean_domain A := @polynomial.euclidean_domain ?x_232 ?x_233
- failed is_def_eq
- [class_instances] (7) ?x_231 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_234 ?x_235
- [class_instances] (8) ?x_235 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_235 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_235 : discrete_field A := @local_ring.residue_field.discrete_field ?x_236 ?x_237
- failed is_def_eq
- [class_instances] (8) ?x_235 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_235 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_238 ?x_239
- [class_instances] (9) ?x_239 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_239 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_231 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (6) ?x_225 : nonzero_comm_ring A := rat.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (6) ?x_225 : nonzero_comm_ring A := @integral_domain.to_nonzero_comm_ring ?x_226 ?x_227
- [class_instances] (7) ?x_227 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @polynomial.integral_domain ?x_228 ?x_229
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @ideal.quotient.integral_domain ?x_230 ?x_231 ?x_232 ?x_233
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @subring.domain ?x_234 ?x_235 ?x_236 ?x_237
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @euclidean_domain.integral_domain ?x_238 ?x_239
- [class_instances] (8) ?x_239 : euclidean_domain A := @polynomial.euclidean_domain ?x_240 ?x_241
- failed is_def_eq
- [class_instances] (8) ?x_239 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_242 ?x_243
- [class_instances] (9) ?x_243 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_243 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_243 : discrete_field A := @local_ring.residue_field.discrete_field ?x_244 ?x_245
- failed is_def_eq
- [class_instances] (9) ?x_243 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_243 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_246 ?x_247
- [class_instances] (10) ?x_247 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_247 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_239 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @normalization_domain.to_integral_domain ?x_228 ?x_229
- [class_instances] (8) ?x_229 : normalization_domain A := @polynomial.normalization_domain ?x_230 ?x_231
- failed is_def_eq
- [class_instances] (8) ?x_229 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (8) ?x_229 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_232 ?x_233
- [class_instances] (9) ?x_233 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @field.to_integral_domain ?x_228 ?x_229
- [class_instances] (8) ?x_229 : field A := real.field
- failed is_def_eq
- [class_instances] (8) ?x_229 : field A := rat.field
- failed is_def_eq
- [class_instances] (8) ?x_229 : field A := @linear_ordered_field.to_field ?x_230 ?x_231
- [class_instances] (9) ?x_231 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_231 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_231 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_232 ?x_233
- [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_229 : field A := @discrete_field.to_field ?x_230 ?x_231
- [class_instances] (9) ?x_231 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_231 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_231 : discrete_field A := @local_ring.residue_field.discrete_field ?x_232 ?x_233
- failed is_def_eq
- [class_instances] (9) ?x_231 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (9) ?x_231 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_234 ?x_235
- [class_instances] (10) ?x_235 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_235 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @discrete_field.to_integral_domain ?x_228 ?x_229 ?x_230
- [class_instances] (8) ?x_229 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_229 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_229 : discrete_field A := @local_ring.residue_field.discrete_field ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (8) ?x_229 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_229 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_233 ?x_234
- [class_instances] (9) ?x_234 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_234 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_227 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_228 ?x_229
- [class_instances] (8) ?x_229 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_229 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_229 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_230 ?x_231
- [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_232 ?x_233 ?x_234 ?x_235
- [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (9) ?x_231 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_232 ?x_233
- [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (10) ?x_233 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := int.comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @field.to_comm_ring ?x_202 ?x_203
- [class_instances] (6) ?x_203 : field A := real.field
- failed is_def_eq
- [class_instances] (6) ?x_203 : field A := rat.field
- failed is_def_eq
- [class_instances] (6) ?x_203 : field A := @linear_ordered_field.to_field ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : field A := @discrete_field.to_field ?x_204 ?x_205
- [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_206 ?x_207
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_208 ?x_209
- [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_201 : comm_ring A := @integral_domain.to_comm_ring ?x_202 ?x_203
- [class_instances] (6) ?x_203 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @polynomial.integral_domain ?x_204 ?x_205
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @ideal.quotient.integral_domain ?x_206 ?x_207 ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @subring.domain ?x_210 ?x_211 ?x_212 ?x_213
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @euclidean_domain.integral_domain ?x_214 ?x_215
- [class_instances] (7) ?x_215 : euclidean_domain A := @polynomial.euclidean_domain ?x_216 ?x_217
- failed is_def_eq
- [class_instances] (7) ?x_215 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_218 ?x_219
- [class_instances] (8) ?x_219 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := @local_ring.residue_field.discrete_field ?x_220 ?x_221
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_219 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_222 ?x_223
- [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_223 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_215 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @normalization_domain.to_integral_domain ?x_204 ?x_205
- [class_instances] (7) ?x_205 : normalization_domain A := @polynomial.normalization_domain ?x_206 ?x_207
- failed is_def_eq
- [class_instances] (7) ?x_205 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (7) ?x_205 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_208 ?x_209
- [class_instances] (8) ?x_209 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @field.to_integral_domain ?x_204 ?x_205
- [class_instances] (7) ?x_205 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := @linear_ordered_field.to_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_208 ?x_209
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : field A := @discrete_field.to_field ?x_206 ?x_207
- [class_instances] (8) ?x_207 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := @local_ring.residue_field.discrete_field ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_207 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_210 ?x_211
- [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_211 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @discrete_field.to_integral_domain ?x_204 ?x_205 ?x_206
- [class_instances] (7) ?x_205 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @local_ring.residue_field.discrete_field ?x_207 ?x_208
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (7) ?x_205 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_209 ?x_210
- [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_210 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_203 : integral_domain A := @linear_ordered_comm_ring.to_integral_domain ?x_204 ?x_205
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_205 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_206 ?x_207
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209 ?x_210 ?x_211
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_207 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_208 ?x_209
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_209 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := rat.nonzero_comm_ring
- failed is_def_eq
- [class_instances] (5) ?x_193 : nonzero_comm_ring ℤ := @integral_domain.to_nonzero_comm_ring ?x_194 ?x_195
- [class_instances] (6) ?x_195 : integral_domain ℤ := real.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_195 : integral_domain ℤ := @polynomial.integral_domain ?x_196 ?x_197
- failed is_def_eq
- [class_instances] (6) ?x_195 : integral_domain ℤ := @ideal.quotient.integral_domain ?x_198 ?x_199 ?x_200 ?x_201
- failed is_def_eq
- [class_instances] (6) ?x_195 : integral_domain ℤ := @subring.domain ?x_202 ?x_203 ?x_204 ?x_205
- failed is_def_eq
- [class_instances] (6) ?x_195 : integral_domain ℤ := @euclidean_domain.integral_domain ?x_206 ?x_207
- [class_instances] (7) ?x_207 : euclidean_domain ℤ := @polynomial.euclidean_domain ?x_208 ?x_209
- failed is_def_eq
- [class_instances] (7) ?x_207 : euclidean_domain ℤ := @discrete_field.to_euclidean_domain ?x_210 ?x_211
- [class_instances] (8) ?x_211 : discrete_field ℤ := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_211 : discrete_field ℤ := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_211 : discrete_field ℤ := @local_ring.residue_field.discrete_field ?x_212 ?x_213
- failed is_def_eq
- [class_instances] (8) ?x_211 : discrete_field ℤ := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_211 : discrete_field ℤ := @discrete_linear_ordered_field.to_discrete_field ?x_214 ?x_215
- [class_instances] (9) ?x_215 : discrete_linear_ordered_field ℤ := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_215 : discrete_linear_ordered_field ℤ := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_207 : euclidean_domain ℤ := int.euclidean_domain
- [class_instances] (4) ?x_134 : ring A := @subalgebra.ring ?x_208 ?x_209 ?x_210 ?x_211 ?x_212 ?x_213
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @algebra.comap.ring ?x_214 ?x_215 ?x_216 ?x_217 ?x_218 ?x_219 ?x_220 ?x_221
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @free_abelian_group.ring ?x_222 ?x_223
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := real.ring
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @cau_seq.ring ?x_224 ?x_225 ?x_226 ?x_227 ?x_228 ?x_229
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring2 ?x_230 ?x_231 ?x_232
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.polynomial_ring ?x_233 ?x_234 ?x_235
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.option_ring ?x_236 ?x_237 ?x_238
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_iter ?x_239 ?x_240 ?x_241 ?x_242
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring_on_sum ?x_243 ?x_244 ?x_245 ?x_246
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @mv_polynomial.ring ?x_247 ?x_248 ?x_249
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @linear_map.endomorphism_ring ?x_250 ?x_251 ?x_252 ?x_253 ?x_254
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @prod.ring ?x_255 ?x_256 ?x_257 ?x_258
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @pi.ring ?x_259 ?x_260 ?x_261
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @subtype.ring ?x_262 ?x_263 ?x_264 ?x_265
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @subset.ring ?x_266 ?x_267 ?x_268 ?x_269
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @finsupp.ring ?x_270 ?x_271 ?x_272 ?x_273
- failed is_def_eq
- [class_instances] (4) ?x_134 : ring A := @nonneg_ring.to_ring ?x_274 ?x_275
- [class_instances] (5) ?x_275 : nonneg_ring A := @linear_nonneg_ring.to_nonneg_ring ?x_276 ?x_277
- [class_instances] (4) ?x_134 : ring A := @domain.to_ring ?x_208 ?x_209
- [class_instances] (5) ?x_209 : domain A := real.domain
- failed is_def_eq
- [class_instances] (5) ?x_209 : domain A := @division_ring.to_domain ?x_210 ?x_211
- [class_instances] (6) ?x_211 : division_ring A := real.division_ring
- failed is_def_eq
- [class_instances] (6) ?x_211 : division_ring A := rat.division_ring
- failed is_def_eq
- [class_instances] (6) ?x_211 : division_ring A := @field.to_division_ring ?x_212 ?x_213
- [class_instances] (7) ?x_213 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_213 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_213 : field A := @linear_ordered_field.to_field ?x_214 ?x_215
- [class_instances] (8) ?x_215 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_216 ?x_217
- [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_213 : field A := @discrete_field.to_field ?x_214 ?x_215
- [class_instances] (8) ?x_215 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_field A := @local_ring.residue_field.discrete_field ?x_216 ?x_217
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_218 ?x_219
- [class_instances] (9) ?x_219 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_219 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_209 : domain A := @linear_nonneg_ring.to_domain ?x_210 ?x_211
- [class_instances] (5) ?x_209 : domain A := @to_domain ?x_210 ?x_211
- [class_instances] (6) ?x_211 : linear_ordered_ring A := real.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_211 : linear_ordered_ring A := rat.linear_ordered_ring
- failed is_def_eq
- [class_instances] (6) ?x_211 : linear_ordered_ring A := @linear_nonneg_ring.to_linear_ordered_ring ?x_212 ?x_213
- [class_instances] (6) ?x_211 : linear_ordered_ring A := @linear_ordered_field.to_linear_ordered_ring ?x_212 ?x_213
- [class_instances] (7) ?x_213 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_213 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_213 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_214 ?x_215
- [class_instances] (8) ?x_215 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (6) ?x_211 : linear_ordered_ring A := @linear_ordered_comm_ring.to_linear_ordered_ring ?x_212 ?x_213
- [class_instances] (7) ?x_213 : linear_ordered_comm_ring A := real.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_213 : linear_ordered_comm_ring A := rat.linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (7) ?x_213 : linear_ordered_comm_ring A := @decidable_linear_ordered_comm_ring.to_linear_ordered_comm_ring ?x_214 ?x_215
- [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := real.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := rat.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := @linear_nonneg_ring.to_decidable_linear_ordered_comm_ring ?x_216 ?x_217 ?x_218 ?x_219
- [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := int.decidable_linear_ordered_comm_ring
- failed is_def_eq
- [class_instances] (8) ?x_215 : decidable_linear_ordered_comm_ring A := @discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring ?x_216 ?x_217
- [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (5) ?x_209 : domain A := @integral_domain.to_domain ?x_210 ?x_211
- [class_instances] (6) ?x_211 : integral_domain A := real.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_211 : integral_domain A := @polynomial.integral_domain ?x_212 ?x_213
- failed is_def_eq
- [class_instances] (6) ?x_211 : integral_domain A := @ideal.quotient.integral_domain ?x_214 ?x_215 ?x_216 ?x_217
- failed is_def_eq
- [class_instances] (6) ?x_211 : integral_domain A := @subring.domain ?x_218 ?x_219 ?x_220 ?x_221
- failed is_def_eq
- [class_instances] (6) ?x_211 : integral_domain A := @euclidean_domain.integral_domain ?x_222 ?x_223
- [class_instances] (7) ?x_223 : euclidean_domain A := @polynomial.euclidean_domain ?x_224 ?x_225
- failed is_def_eq
- [class_instances] (7) ?x_223 : euclidean_domain A := @discrete_field.to_euclidean_domain ?x_226 ?x_227
- [class_instances] (8) ?x_227 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_227 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_227 : discrete_field A := @local_ring.residue_field.discrete_field ?x_228 ?x_229
- failed is_def_eq
- [class_instances] (8) ?x_227 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_227 : discrete_field A := @discrete_linear_ordered_field.to_discrete_field ?x_230 ?x_231
- [class_instances] (9) ?x_231 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_231 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_223 : euclidean_domain A := int.euclidean_domain
- failed is_def_eq
- [class_instances] (6) ?x_211 : integral_domain A := @normalization_domain.to_integral_domain ?x_212 ?x_213
- [class_instances] (7) ?x_213 : normalization_domain A := @polynomial.normalization_domain ?x_214 ?x_215
- failed is_def_eq
- [class_instances] (7) ?x_213 : normalization_domain A := int.normalization_domain
- failed is_def_eq
- [class_instances] (7) ?x_213 : normalization_domain A := @gcd_domain.to_normalization_domain ?x_216 ?x_217
- [class_instances] (8) ?x_217 : gcd_domain A := int.gcd_domain
- failed is_def_eq
- [class_instances] (6) ?x_211 : integral_domain A := rat.integral_domain
- failed is_def_eq
- [class_instances] (6) ?x_211 : integral_domain A := @field.to_integral_domain ?x_212 ?x_213
- [class_instances] (7) ?x_213 : field A := real.field
- failed is_def_eq
- [class_instances] (7) ?x_213 : field A := rat.field
- failed is_def_eq
- [class_instances] (7) ?x_213 : field A := @linear_ordered_field.to_field ?x_214 ?x_215
- [class_instances] (8) ?x_215 : linear_ordered_field A := real.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : linear_ordered_field A := rat.linear_ordered_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : linear_ordered_field A := @discrete_linear_ordered_field.to_linear_ordered_field ?x_216 ?x_217
- [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := real.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (9) ?x_217 : discrete_linear_ordered_field A := rat.discrete_linear_ordered_field
- failed is_def_eq
- [class_instances] (7) ?x_213 : field A := @discrete_field.to_field ?x_214 ?x_215
- [class_instances] (8) ?x_215 : discrete_field A := complex.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_field A := real.discrete_field
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_field A := @local_ring.residue_field.discrete_field ?x_216 ?x_217
- failed is_def_eq
- [class_instances] (8) ?x_215 : discrete_field A := rat.discrete_field
- failed is_def_eq
- [class_instances] (8)
- (message too long, truncated at 262144 characters)
- scratch.lean:9:0: error
- (deterministic) timeout
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement