Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Instantiated by Slic3r::Print::Object->_support_material()
- # only generate() and contact_distance() are called from the outside of this module.
- package Slic3r::Print::SupportMaterial;
- use Moo;
- use 5.010;
- use Math::Trig ':radial';
- use Math::Trig;
- use List::Util qw(max min);
- use List::Util qw(sum min max);
- use Slic3r::ExtrusionPath ':roles';
- use Slic3r::Flow ':roles';
- use Slic3r::Geometry qw(epsilon scale scaled_epsilon PI rad2deg deg2rad convex_hull);
- use Slic3r::Geometry::Clipper qw(offset diff union union_ex intersection offset_ex offset2
- intersection_pl offset2_ex diff_pl diff_ex);
- use Slic3r::Surface ':types';
- has 'print_config' => (is => 'rw', required => 1);
- has 'object_config' => (is => 'rw', required => 1);
- has 'flow' => (is => 'rw', required => 1);
- has 'first_layer_flow' => (is => 'rw', required => 1);
- has 'interface_flow' => (is => 'rw', required => 1);
- use constant DEBUG_CONTACT_ONLY => 0;
- # increment used to reach MARGIN in steps to avoid trespassing thin objects
- use constant MARGIN_STEP => MARGIN/3;
- #The coordinates of the points that is to be supported.
- my $min_X=0;
- my $max_X=20;
- my $min_Y=0;
- my $max_Y=20;
- my $distance=10;
- my $Z;
- my $i;
- my $j;
- my $I;
- my $J;
- my $X_ref;
- my $Y_ref;
- my @Z;
- my @Y;
- my @X;
- my $X_branch;
- my $Y_branch;
- my $Z_branch;
- my @X_list;
- my @Y_list;
- my @Z_list;
- my @X_values;
- my @Y_values;
- my $dist;
- my $rXY;
- my $theta;
- my $phi;
- my $output;
- my $outfile;
- my $rho;
- #The minimum angle from horizontl your printer can make, in degrees
- my $min_angle= 40;
- #Ignore the next line, it is not an input parameter.
- ($X_ref,$Y_ref)=grid($min_X,$max_X,$min_Y,$max_Y,$distance);@X=@$X_ref;@Y=@{$Y_ref};
- for $i (0..$#X){
- $Z[$i]=20;#The function that defined the height of each point. This setting wil give you a flat roof. For a more advanced tree, try:
- #$Z[$i]=-0.01*$X[$i]**2+0.2*$Y[$i]-0.005*$Y[$i]**2+20;
- }
- my $min_radian = deg2rad($min_angle);
- my $b = tan($min_radian);
- @Z=map{$_/$b}@Z;
- open $output;
- print $output "width=2;\n";
- print $output "sphere_radius=0;\n";
- print $output "base_plate_size=10;\n\n";
- sub generate {
- # $object is Slic3r::Print::Object
- my ($self, $object) = @_;
- # Determine the top surfaces of the support, defined as:
- # contact = overhangs - clearance + margin
- # This method is responsible for identifying what contact surfaces
- # should the support material expose to the object in order to guarantee
- # that it will be effective, regardless of how it's built below.
- my ($contact, $overhang) = $self->contact_area($object);
- # Determine the top surfaces of the object. We need these to determine
- # the layer heights of support material and to clip support to the object
- # silhouette.
- my ($top) = $self->object_top($object, $contact);
- # We now know the upper and lower boundaries for our support material object
- # (@$contact_z and @$top_z), so we can generate intermediate layers.
- my $support_z = $self->support_layers_z(
- [ sort keys %$contact ],
- [ sort keys %$top ],
- max(map $_->height, @{$object->layers})
- );
- # If we wanted to apply some special logic to the first support layers lying on
- # object's top surfaces this is the place to detect them
- my $shape = [];
- if ($self->object_config->support_material_pattern eq 'pillars') {
- $self->grid($min_X,$max_X,$min_Y,$max_Y,$distance);
- }
- # Propagate contact layers downwards to generate interface layers
- my ($interface) = $self->generate_interface_layers($support_z, $contact, $top);
- $self->clip_with_object($interface, $support_z, $object);
- $self->clip_with_shape($interface, $shape) if @$shape;
- # Propagate contact layers and interface layers downwards to generate
- # the main support layers.
- my ($base) = $self->generate_base_layers($support_z, $contact, $interface, $top);
- $self->clip_with_object($base, $support_z, $object);
- $self->clip_with_shape($base, $shape) if @$shape;
- # Detect what part of base support layers are "reverse interfaces" because they
- # lie above object's top surfaces.
- $self->generate_bottom_interface_layers($support_z, $base, $top, $interface);
- # Install support layers into object.
- for my $i (0 .. $#$support_z) {
- $object->add_support_layer(
- $i, # id
- ($i == 0) ? $support_z->[$i] : ($support_z->[$i] - $support_z->[$i-1]), # height
- $support_z->[$i], # print_z
- );
- if ($i >= 1) {
- $object->support_layers->[-2]->set_upper_layer($object->support_layers->[-1]);
- $object->support_layers->[-1]->set_lower_layer($object->support_layers->[-2]);
- }
- }
- # Generate the actual toolpaths and save them into each layer.
- $self->generate_toolpaths($object, $overhang, $contact, $interface, $base);
- }
- sub contact_area {
- # $object is Slic3r::Print::Object
- my ($self, $object) = @_;
- my $conf = $self->object_config;
- # if user specified a custom angle threshold, convert it to radians
- my $threshold_rad;
- if (!($conf->support_material_threshold =~ /%$/)) {
- $threshold_rad = deg2rad($conf->support_material_threshold + 1); # +1 makes the threshold inclusive
- Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
- }
- # Build support on a build plate only? If so, then collect top surfaces into $buildplate_only_top_surfaces
- # and subtract $buildplate_only_top_surfaces from the contact surfaces, so
- # there is no contact surface supported by a top surface.
- my $buildplate_only =
- ( $conf->support_material || $conf->support_material_enforce_layers)
- && $conf->support_material_buildplate_only;
- my $buildplate_only_top_surfaces = [];
- # determine contact areas
- my %contact = (); # contact_z => [ polygons ]
- my %overhang = (); # contact_z => [ polygons ] - this stores the actual overhang supported by each contact layer
- for my $layer_id (0 .. $#{$object->layers}) {
- # note $layer_id might != $layer->id when raft_layers > 0
- # so $layer_id == 0 means first object layer
- # and $layer->id == 0 means first print layer (including raft)
- # if no raft, and we're at layer 0, skip to layer 1
- if ( $conf->raft_layers == 0 && $layer_id == 0 ) {
- next;
- }
- # with or without raft, if we're above layer 1, we need to quit
- # support generation if supports are disabled, or if we're at a high
- # enough layer that enforce-supports no longer applies
- if ( $layer_id > 0
- && !$conf->support_material
- && ($layer_id >= $conf->support_material_enforce_layers) ) {
- # if we are only going to generate raft just check
- # the 'overhangs' of the first object layer
- last;
- }
- my $layer = $object->get_layer($layer_id);
- last if $conf->support_material_max_layers
- && $layer_id > $conf->support_material_max_layers;
- if ($buildplate_only) {
- # Collect the top surfaces up to this layer and merge them.
- my $projection_new = [];
- push @$projection_new, ( map $_->p, map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions} );
- if (@$projection_new) {
- # Merge the new top surfaces with the preceding top surfaces.
- # Apply the safety offset to the newly added polygons, so they will connect
- # with the polygons collected before,
- # but don't apply the safety offset during the union operation as it would
- # inflate the polygons over and over.
- push @$buildplate_only_top_surfaces, @{ offset($projection_new, scale(0.01)) };
- $buildplate_only_top_surfaces = union($buildplate_only_top_surfaces, 0);
- }
- }
- # detect overhangs and contact areas needed to support them
- my (@overhang, @contact) = ();
- if ($layer_id == 0) {
- # this is the first object layer, so we're here just to get the object
- # footprint for the raft
- # we only consider contours and discard holes to get a more continuous raft
- push @overhang, map $_->clone, map $_->contour, @{$layer->slices};
- push @contact, @{offset(\@overhang, scale +MARGIN)};
- } else {
- my $lower_layer = $object->get_layer($layer_id-1);
- foreach my $layerm (@{$layer->regions}) {
- my $fw = $layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER)->scaled_width;
- my $diff;
- # If a threshold angle was specified, use a different logic for detecting overhangs.
- if (($conf->support_material && defined $threshold_rad)
- || $layer_id <= $conf->support_material_enforce_layers
- || ($conf->raft_layers > 0 && $layer_id == 0)) {
- my $d = 0;
- my $layer_threshold_rad = $threshold_rad;
- if ($layer_id <= $conf->support_material_enforce_layers) {
- # Use ~45 deg number for enforced supports if we are in auto
- $layer_threshold_rad = deg2rad(89);
- }
- if (defined $layer_threshold_rad) {
- $d = scale $lower_layer->height
- * ((cos $layer_threshold_rad) / (sin $layer_threshold_rad));
- }
- $diff = diff(
- [ map $_->p, @{$layerm->slices} ],
- offset([ map @$_, @{$lower_layer->slices} ], +$d),
- );
- # only enforce spacing from the object ($fw/2) if the threshold angle
- # is not too high: in that case, $d will be very small (as we need to catch
- # very short overhangs), and such contact area would be eaten by the
- # enforced spacing, resulting in high threshold angles to be almost ignored
- $diff = diff(
- offset($diff, $d - $fw/2),
- [ map @$_, @{$lower_layer->slices} ],
- ) if $d > $fw/2;
- } else {
- $diff = diff(
- [ map $_->p, @{$layerm->slices} ],
- offset([ map @$_, @{$lower_layer->slices} ], +$conf->get_abs_value_over('support_material_threshold', $fw)),
- );
- # collapse very tiny spots
- $diff = offset2($diff, -$fw/10, +$fw/10);
- # $diff now contains the ring or stripe comprised between the boundary of
- # lower slices and the centerline of the last perimeter in this overhanging layer.
- # Void $diff means that there's no upper perimeter whose centerline is
- # outside the lower slice boundary, thus no overhang
- }
- if ($conf->dont_support_bridges) {
- # compute the area of bridging perimeters
- my $bridged_perimeters; # Polygons
- {
- my $bridge_flow = $layerm->flow(FLOW_ROLE_PERIMETER, 1);
- # Get the lower layer's slices and grow them by half the nozzle diameter
- # because we will consider the upper perimeters supported even if half nozzle
- # falls outside the lower slices.
- my $lower_grown_slices;
- {
- my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $layerm->region->config->perimeter_extruder-1);
- $lower_grown_slices = offset(
- [ map @$_, @{$lower_layer->slices} ],
- +scale($nozzle_diameter/2),
- );
- }
- # Get all perimeters as polylines.
- # TODO: split_at_first_point() (called by as_polyline() for ExtrusionLoops)
- # could split a bridge mid-way
- my @overhang_perimeters = map $_->as_polyline, @{$layerm->perimeters->flatten};
- # Only consider the overhang parts of such perimeters,
- # overhangs being those parts not supported by
- # workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
- $_->[0]->translate(1,0) for @overhang_perimeters;
- @overhang_perimeters = @{diff_pl(
- \@overhang_perimeters,
- $lower_grown_slices,
- )};
- # only consider straight overhangs
- @overhang_perimeters = grep $_->is_straight, @overhang_perimeters;
- # only consider overhangs having endpoints inside layer's slices
- foreach my $polyline (@overhang_perimeters) {
- $polyline->extend_start($fw);
- $polyline->extend_end($fw);
- }
- @overhang_perimeters = grep {
- $layer->slices->contains_point($_->first_point) && $layer->slices->contains_point($_->last_point)
- } @overhang_perimeters;
- # convert bridging polylines into polygons by inflating them with their thickness
- {
- # For bridges we can't assume width is larger than spacing because they
- # are positioned according to non-bridging perimeters spacing.
- my $w = max(
- $bridge_flow->scaled_width,
- $bridge_flow->scaled_spacing,
- $fw, # width of external perimeters
- $layerm->flow(FLOW_ROLE_PERIMETER)->scaled_width,
- );
- $bridged_perimeters = union([
- # Also apply safety offset to ensure no gaps are left in between.
- map @{$_->grow($w/2 + 10)}, @overhang_perimeters
- ]);
- }
- }
- } # if ($conf->dont_support_bridges)
- if ($buildplate_only) {
- # Don't support overhangs above the top surfaces.
- # This step is done before the contact surface is calcuated by growing the overhang region.
- $diff = diff($diff, $buildplate_only_top_surfaces);
- }
- next if !@$diff;
- push @overhang, @$diff; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
- # Let's define the required contact area by using a max gap of half the upper
- # extrusion width and extending the area according to the configured margin.
- # We increment the area in steps because we don't want our support to overflow
- # on the other side of the object (if it's very thin).
- {
- my $slices_margin = offset([ map @$_, @{$lower_layer->slices} ], +$fw/2);
- if ($buildplate_only) {
- # Trim the inflated contact surfaces by the top surfaces as well.
- push @$slices_margin, map $_->clone, @{$buildplate_only_top_surfaces};
- $slices_margin = union($slices_margin);
- }
- for ($fw/2, map {scale MARGIN_STEP} 1..(MARGIN / MARGIN_STEP)) {
- $diff = diff(
- offset($diff, $_),
- $slices_margin,
- );
- }
- }
- push @contact, @$diff;
- }
- }
- next if !@contact;
- # now apply the contact areas to the layer were they need to be made
- {
- # get the average nozzle diameter used on this layer
- my @nozzle_diameters = map $self->print_config->get_at('nozzle_diameter', $_),
- map { $_->config->perimeter_extruder-1, $_->config->infill_extruder-1, $_->config->solid_infill_extruder-1 }
- map $_->region, @{$layer->regions};
- my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
- my $contact_z = $layer->print_z - $self->contact_distance($layer->height, $nozzle_diameter);
- # ignore this contact area if it's too low
- next if $contact_z < $conf->get_value('first_layer_height') - epsilon;
- $contact{$contact_z} = [ @contact ];
- $overhang{$contact_z} = [ @overhang ];
- if (0) {
- require "Slic3r/SVG.pm";
- Slic3r::SVG::output("out\\contact_" . $contact_z . ".svg",
- green_expolygons => union_ex($buildplate_only_top_surfaces),
- blue_expolygons => union_ex(\@contact),
- red_expolygons => union_ex(\@overhang),
- );
- }
- }
- }
- return (\%contact, \%overhang);
- }
- sub object_top {
- my ($self, $object, $contact) = @_;
- # find object top surfaces
- # we'll use them to clip our support and detect where does it stick
- my %top = (); # print_z => [ expolygons ]
- return \%top if ($self->object_config->support_material_buildplate_only);
- my $projection = [];
- foreach my $layer (reverse @{$object->layers}) {
- if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) {
- # compute projection of the contact areas above this top layer
- # first add all the 'new' contact areas to the current projection
- # ('new' means all the areas that are lower than the last top layer
- # we considered)
- my $min_top = min(keys %top) // max(keys %$contact);
- # use <= instead of just < because otherwise we'd ignore any contact regions
- # having the same Z of top layers
- push @$projection, map @{$contact->{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %$contact;
- # now find whether any projection falls onto this top surface
- my $touching = intersection($projection, [ map $_->p, @top ]);
- if (@$touching) {
- # grow top surfaces so that interface and support generation are generated
- # with some spacing from object - it looks we don't need the actual
- # top shapes so this can be done here
- $top{ $layer->print_z } = offset($touching, $self->flow->scaled_width);
- }
- # remove the areas that touched from the projection that will continue on
- # next, lower, top surfaces
- $projection = diff($projection, $touching);
- }
- }
- return \%top;
- }
- sub support_layers_z {
- my ($self, $contact_z, $top_z, $max_object_layer_height) = @_;
- # quick table to check whether a given Z is a top surface
- my %top = map { $_ => 1 } @$top_z;
- # determine layer height for any non-contact layer
- # we use max() to prevent many ultra-thin layers to be inserted in case
- # layer_height > nozzle_diameter * 0.75
- my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $self->object_config->support_material_extruder-1);
- my $support_material_height = max($max_object_layer_height, $nozzle_diameter * 0.75);
- my $contact_distance = $self->contact_distance($support_material_height, $nozzle_diameter);
- # initialize known, fixed, support layers
- my @z = sort { $a <=> $b }
- @$contact_z,
- @$top_z, # TODO: why we have this?
- (map $_ + $contact_distance, @$top_z);
- # enforce first layer height
- my $first_layer_height = $self->object_config->get_value('first_layer_height');
- shift @z while @z && $z[0] <= $first_layer_height;
- unshift @z, $first_layer_height;
- # add raft layers by dividing the space between first layer and
- # first contact layer evenly
- if ($self->object_config->raft_layers > 1 && @z >= 2) {
- # $z[1] is last raft layer (contact layer for the first layer object)
- my $height = ($z[1] - $z[0]) / ($self->object_config->raft_layers - 1);
- # since we already have two raft layers ($z[0] and $z[1]) we need to insert
- # raft_layers-2 more
- splice @z, 1, 0,
- map { sprintf "%.2f", $_ }
- map { $z[0] + $height * $_ }
- 1..($self->object_config->raft_layers - 2);
- }
- # create other layers (skip raft layers as they're already done and use thicker layers)
- for (my $i = $#z; $i >= $self->object_config->raft_layers; $i--) {
- my $target_height = $support_material_height;
- if ($i > 0 && $top{ $z[$i-1] }) {
- $target_height = $nozzle_diameter;
- }
- # enforce first layer height
- if (($i == 0 && $z[$i] > $target_height + $first_layer_height)
- || ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
- splice @z, $i, 0, ($z[$i] - $target_height);
- $i++;
- }
- }
- # remove duplicates and make sure all 0.x values have the leading 0
- {
- my %sl = map { 1 * $_ => 1 } @z;
- @z = sort { $a <=> $b } keys %sl;
- }
- return \@z;
- }
- sub generate_interface_layers {
- my ($self, $support_z, $contact, $top) = @_;
- # let's now generate interface layers below contact areas
- my %interface = (); # layer_id => [ polygons ]
- my $interface_layers_num = $self->object_config->support_material_interface_layers;
- for my $layer_id (0 .. $#$support_z) {
- my $z = $support_z->[$layer_id];
- my $this = $contact->{$z} // next;
- # count contact layer as interface layer
- for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers_num; $i--) {
- $z = $support_z->[$i];
- my @overlapping_layers = $self->overlapping_layers($i, $support_z);
- my @overlapping_z = map $support_z->[$_], @overlapping_layers;
- # Compute interface area on this layer as diff of upper contact area
- # (or upper interface area) and layer slices.
- # This diff is responsible of the contact between support material and
- # the top surfaces of the object. We should probably offset the top
- # surfaces vertically before performing the diff, but this needs
- # investigation.
- $this = $interface{$i} = diff(
- [
- @$this, # clipped projection of the current contact regions
- @{ $interface{$i} || [] }, # interface regions already applied to this layer
- ],
- [
- (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
- (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
- ],
- 1,
- );
- }
- }
- return \%interface;
- }
- sub generate_bottom_interface_layers {
- my ($self, $support_z, $base, $top, $interface) = @_;
- # If no interface layers are allowed, don't generate bottom interface layers.
- return if $self->object_config->support_material_interface_layers == 0;
- my $area_threshold = $self->interface_flow->scaled_spacing ** 2;
- # loop through object's top surfaces
- foreach my $top_z (sort keys %$top) {
- my $this = $top->{$top_z};
- # keep a count of the interface layers we generated for this top surface
- my $interface_layers = 0;
- # loop through support layers until we find the one(s) right above the top
- # surface
- foreach my $layer_id (0 .. $#$support_z) {
- my $z = $support_z->[$layer_id];
- next unless $z > $top_z;
- if ($base->{$layer_id}) {
- # get the support material area that should be considered interface
- my $interface_area = intersection(
- $base->{$layer_id},
- $this,
- );
- # discard too small areas
- $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
- # subtract new interface area from base
- $base->{$layer_id} = diff(
- $base->{$layer_id},
- $interface_area,
- );
- # add new interface area to interface
- push @{$interface->{$layer_id}}, @$interface_area;
- }
- $interface_layers++;
- last if $interface_layers == $self->object_config->support_material_interface_layers;
- }
- }
- }
- sub generate_base_layers {
- my ($self, $support_z, $contact, $interface, $top) = @_;
- # let's now generate support layers under interface layers
- my $base = {}; # layer_id => [ polygons ]
- {
- for my $i (reverse 0 .. $#$support_z-1) {
- my $z = $support_z->[$i];
- my @overlapping_layers = $self->overlapping_layers($i, $support_z);
- my @overlapping_z = map $support_z->[$_], @overlapping_layers;
- # in case we have no interface layers, look at upper contact
- # (1 interface layer means we only have contact layer, so $interface->{$i+1} is empty)
- my @upper_contact = ();
- if ($self->object_config->support_material_interface_layers <= 1) {
- @upper_contact = @{ $contact->{$support_z->[$i+1]} || [] };
- }
- $base->{$i} = diff(
- [
- @{ $base->{$i+1} || [] }, # support regions on upper layer
- @{ $interface->{$i+1} || [] }, # interface regions on upper layer
- @upper_contact, # contact regions on upper layer
- ],
- [
- (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
- (map @$_, map $interface->{$_}, grep exists $interface->{$_}, @overlapping_layers), # interface regions on this layer
- (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
- ],
- 1,
- );
- }
- }
- return $base;
- }
- # This method removes object silhouette from support material
- # (it's used with interface and base only). It removes a bit more,
- # leaving a thin gap between object and support in the XY plane.
- sub clip_with_object {
- my ($self, $support, $support_z, $object) = @_;
- foreach my $i (keys %$support) {
- next if !@{$support->{$i}};
- my $zmax = $support_z->[$i];
- my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
- my @layers = grep { $_->print_z > $zmin && ($_->print_z - $_->height) < $zmax }
- @{$object->layers};
- # $layer->slices contains the full shape of layer, thus including
- # perimeter's width. $support contains the full shape of support
- # material, thus including the width of its foremost extrusion.
- # We leave a gap equal to a full extrusion width.
- $support->{$i} = diff(
- $support->{$i},
- offset([ map @$_, map @{$_->slices}, @layers ], +$self->flow->scaled_width),
- );
- }
- }
- sub generate_toolpaths {
- my ($self, $object, $overhang, $contact, $interface, $base) = @_;
- my $flow = $self->flow;
- my $interface_flow = $self->interface_flow;
- # shape of contact area
- my $contact_loops = 1;
- my $circle_radius = 1.5 * $interface_flow->scaled_width;
- my $circle_distance = 3 * $circle_radius;
- my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ],
- (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
- Slic3r::debugf "Generating patterns\n";
- # prepare fillers
- my $pattern = $self->object_config->support_material_pattern;
- my @angles = ($self->object_config->support_material_angle);
- if ($pattern eq 'rectilinear-grid') {
- $pattern = 'rectilinear';
- push @angles, $angles[0] + 90;
- } elsif ($pattern eq 'pillars') {
- $pattern = 'honeycomb';
- }
- my $interface_angle = $self->object_config->support_material_angle + 90;
- my $interface_spacing = $self->object_config->support_material_interface_spacing + $interface_flow->spacing;
- my $interface_density = $interface_spacing == 0 ? 1 : $interface_flow->spacing / $interface_spacing;
- my $support_spacing = $self->object_config->support_material_spacing + $flow->spacing;
- my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
- my $process_layer = sub {
- my ($layer_id) = @_;
- my $layer = $object->support_layers->[$layer_id];
- my $z = $layer->print_z;
- # we redefine flows locally by applying this layer's height
- my $_flow = $flow->clone;
- my $_interface_flow = $interface_flow->clone;
- $_flow->set_height($layer->height);
- $_interface_flow->set_height($layer->height);
- my $overhang = $overhang->{$z} || [];
- my $contact = $contact->{$z} || [];
- my $interface = $interface->{$layer_id} || [];
- my $base = $base->{$layer_id} || [];
- if (DEBUG_CONTACT_ONLY) {
- $interface = [];
- $base = [];
- }
- if (0) {
- require "Slic3r/SVG.pm";
- Slic3r::SVG::output("layer_" . $z . ".svg",
- red_expolygons => union_ex($contact),
- green_expolygons => union_ex($interface),
- );
- }
- # islands
- $layer->support_islands->append(@{union_ex([ @$interface, @$base, @$contact ])});
- # contact
- my $contact_infill = [];
- if ($self->object_config->support_material_interface_layers == 0) {
- # if no interface layers were requested we treat the contact layer
- # exactly as a generic base layer
- push @$base, @$contact;
- } elsif (@$contact && $contact_loops > 0) {
- # generate the outermost loop
- # find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
- $contact = offset($contact, -$_interface_flow->scaled_width/2);
- my @loops0 = ();
- {
- # find centerline of the external loop of the contours
- my @external_loops = @$contact;
- # only consider the loops facing the overhang
- {
- my $overhang_with_margin = offset($overhang, +$_interface_flow->scaled_width/2);
- @external_loops = grep {
- @{intersection_pl(
- [ $_->split_at_first_point ],
- $overhang_with_margin,
- )}
- } @external_loops;
- }
- # apply a pattern to the loop
- my @positions = map @{Slic3r::Polygon->new(@$_)->equally_spaced_points($circle_distance)}, @external_loops;
- @loops0 = @{diff(
- [ @external_loops ],
- [ map { my $c = $circle->clone; $c->translate(@$_); $c } @positions ],
- )};
- }
- # make more loops
- my @loops = @loops0;
- for my $i (2..$contact_loops) {
- my $d = ($i-1) * $_interface_flow->scaled_spacing;
- push @loops, @{offset2(\@loops0, -$d -0.5*$_interface_flow->scaled_spacing, +0.5*$_interface_flow->scaled_spacing)};
- }
- # clip such loops to the side oriented towards the object
- @loops = @{intersection_pl(
- [ map $_->split_at_first_point, @loops ],
- offset($overhang, +scale MARGIN),
- )};
- # add the contact infill area to the interface area
- # note that growing loops by $circle_radius ensures no tiny
- # extrusions are left inside the circles; however it creates
- # a very large gap between loops and contact_infill, so maybe another
- # solution should be found to achieve both goals
- $contact_infill = diff(
- $contact,
- [ map @{$_->grow($circle_radius*1.1)}, @loops ],
- );
- # transform loops into ExtrusionPath objects
- my $mm3_per_mm = $_interface_flow->mm3_per_mm;
- @loops = map Slic3r::ExtrusionPath->new(
- polyline => $_,
- role => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
- mm3_per_mm => $mm3_per_mm,
- width => $_interface_flow->width,
- height => $layer->height,
- ), @loops;
- $layer->support_interface_fills->append(@loops);
- }
- # Allocate the fillers exclusively in the worker threads! Don't allocate them at the main thread,
- # as Perl copies the C++ pointers by default, so then the C++ objects are shared between threads!
- my %fillers = (
- interface => Slic3r::Filler->new_from_type('rectilinear'),
- support => Slic3r::Filler->new_from_type($pattern),
- );
- my $bounding_box = $object->bounding_box;
- $fillers{interface}->set_bounding_box($object->bounding_box);
- $fillers{support}->set_bounding_box($object->bounding_box);
- # interface and contact infill
- if (@$interface || @$contact_infill) {
- # make interface layers alternate angles by 90 degrees
- my $alternate_angle = $interface_angle + (90 * (($layer_id + 1) % 2));
- $fillers{interface}->set_angle(deg2rad($alternate_angle));
- $fillers{interface}->set_min_spacing($_interface_flow->spacing);
- # find centerline of the external loop
- $interface = offset2($interface, +scaled_epsilon, -(scaled_epsilon + $_interface_flow->scaled_width/2));
- # join regions by offsetting them to ensure they're merged
- $interface = offset([ @$interface, @$contact_infill ], scaled_epsilon);
- # turn base support into interface when it's contained in our holes
- # (this way we get wider interface anchoring)
- {
- my @p = @$interface;
- @$interface = ();
- foreach my $p (@p) {
- if ($p->is_clockwise) {
- my $p2 = $p->clone;
- $p2->make_counter_clockwise;
- next if !@{diff([$p2], $base, 1)};
- }
- push @$interface, $p;
- }
- }
- $base = diff($base, $interface);
- my @paths = ();
- foreach my $expolygon (@{union_ex($interface)}) {
- my $p = $fillers{interface}->fill_surface(
- Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
- density => $interface_density,
- layer_height => $layer->height,
- complete => 1,
- );
- my $mm3_per_mm = $_interface_flow->mm3_per_mm;
- push @paths, map Slic3r::ExtrusionPath->new(
- polyline => Slic3r::Polyline->new(@$_),
- role => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
- mm3_per_mm => $mm3_per_mm,
- width => $_interface_flow->width,
- height => $layer->height,
- ), @$p;
- }
- $layer->support_interface_fills->append(@paths);
- }
- # support or flange
- if (@$base) {
- my $filler = $fillers{support};
- $filler->set_angle(deg2rad($angles[ ($layer_id) % @angles ]));
- # We don't use $base_flow->spacing because we need a constant spacing
- # value that guarantees that all layers are correctly aligned.
- $filler->set_min_spacing($flow->spacing);
- my $density = $support_density;
- my $base_flow = $_flow;
- # find centerline of the external loop/extrusions
- my $to_infill = offset2($base, +scaled_epsilon, -(scaled_epsilon + $_flow->scaled_width/2));
- my @paths = ();
- # base flange
- if ($layer_id == 0) {
- $filler = $fillers{interface};
- $filler->set_angle(deg2rad($self->object_config->support_material_angle + 90));
- $density = 0.5;
- $base_flow = $self->first_layer_flow;
- # use the proper spacing for first layer as we don't need to align
- # its pattern to the other layers
- $filler->set_min_spacing($base_flow->spacing);
- # subtract brim so that it goes around the object fully (and support gets its own brim)
- if ($self->print_config->brim_width > 0) {
- my $d = +scale $self->print_config->brim_width*2;
- $to_infill = diff_ex(
- $to_infill,
- offset($object->get_layer(0)->slices->polygons, $d),
- );
- } else {
- $to_infill = union_ex($to_infill);
- }
- } else {
- # draw a perimeter all around support infill
- # TODO: use brim ordering algorithm
- my $mm3_per_mm = $_flow->mm3_per_mm;
- push @paths, map Slic3r::ExtrusionPath->new(
- polyline => $_->split_at_first_point,
- role => EXTR_ROLE_SUPPORTMATERIAL,
- mm3_per_mm => $mm3_per_mm,
- width => $_flow->width,
- height => $layer->height,
- ), @$to_infill;
- # TODO: use offset2_ex()
- $to_infill = offset_ex($to_infill, -$_flow->scaled_spacing);
- }
- my $mm3_per_mm = $base_flow->mm3_per_mm;
- foreach my $expolygon (@$to_infill) {
- my $p = $filler->fill_surface(
- Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
- density => $density,
- layer_height => $layer->height,
- complete => 1,
- );
- push @paths, map Slic3r::ExtrusionPath->new(
- polyline => Slic3r::Polyline->new(@$_),
- role => EXTR_ROLE_SUPPORTMATERIAL,
- mm3_per_mm => $mm3_per_mm,
- width => $base_flow->width,
- height => $layer->height,
- ), @$p;
- }
- $layer->support_fills->append(@paths);
- }
- if (0) {
- require "Slic3r/SVG.pm";
- Slic3r::SVG::output("islands_" . $z . ".svg",
- red_expolygons => union_ex($contact),
- green_expolygons => union_ex($interface),
- green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
- polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
- );
- }
- };
- Slic3r::parallelize(
- threads => $self->print_config->threads,
- items => [ 0 .. $#{$object->support_layers} ],
- thread_cb => sub {
- my $q = shift;
- while (defined (my $layer_id = $q->dequeue)) {
- $process_layer->($layer_id);
- }
- },
- no_threads_cb => sub {
- $process_layer->($_) for 0 .. $#{$object->support_layers};
- },
- );
- }
- while ($#X>0){
- ($I,$J)=find_min_dist(\@X,\@Y,\@Z);
- ($X_branch,$Y_branch,$Z_branch)=find_branch($X[$I],$Y[$I],$Z[$I],$X[$J],$Y[$J],$Z[$J]);
- @X_list=($X_branch,$X[$I],$X[$J]);
- @Y_list=($Y_branch,$Y[$I],$Y[$J]);
- @Z_list=($Z_branch,$Z[$I],$Z[$J]);
- for $j (0..$#Y_list){
- if (abs($X_list[$j]) < 0.001){
- $X_list[$j]=0;
- }
- if (abs($Y_list[$j]) < 0.001){
- $Y_list[$j]=0;
- }
- if (abs($Z_list[$j]) < 0.001){
- $Z_list[$J]=0;
- }
- }
- branch(\@X_list,\@Y_list,\@Z_list);
- splice(@X,$I,1,$X_branch);
- splice(@X,$J,1);
- splice(@Y,$I,1,$Y_branch);
- splice(@Y,$J,1);
- splice(@Z,$I,1,$Z_branch);
- splice(@Z,$J,1);
- }
- print $output 'if(base_plate_size>0){';
- print $output "\n translate([$X[0],$Y[0],$Z[0]*$b])\n";
- print $output "cube([base_plate_size,base_plate_size,1],center=true);}";
- sub grid{
- my $d=$_[4];
- @X_values=$_[0]/$d..$_[1]/$d;
- @X_values=map{$_*$d} @X_values;
- @Y_values=$_[2]/$d..$_[3]/$d;
- @Y_values=map{$_*$d} @Y_values;
- for $i (0..$#X_values){
- @Y=(@Y,@Y_values);
- for $j (0..$#Y_values){
- $X[$i*($#Y_values+1)+$j]= $X_values[$i];
- }
- }
- return (\@X,\@Y);
- }
- sub branch{
- my @X=@{ $_[0] };
- my @Y=@{ $_[1] };
- my @Z=@{ $_[2] };
- @Z=map{$_*$b}@Z;
- for $i (1..$#X){
- ($rho, $theta, $phi) = cartesian_to_spherical($X[$i]-$X[0],$Y[$i]-$Y[0],$Z[$i]-$Z[0]);
- $phi = rad2deg($phi);
- if (abs($phi)<0.001){$phi=0;}
- $theta = rad2deg($theta)+90;
- if (abs($theta)<0.001){$theta=0;}
- if (abs($rho)>0.001){
- print $output "translate([$X[0],$Y[0],$Z[0]])\n";
- print $output "rotate([0,0,$theta])\n";
- print $output "rotate([$phi,0,0])\n";
- print $output "translate([-width/2,-width/2,0])";
- print $output "cube([width,width,$rho]);\n";
- print $output 'if (sphere_radius>0){';
- print $output "\n translate([$X[$i],$Y[$i],$Z[$i]])\n";
- print $output "sphere(sphere_radius,center=1);}\n";}
- }
- }
- sub find_min_dist{
- my @X=@{ $_[0] };
- my @Y=@{ $_[1] };
- my @Z=@{ $_[2] };
- my $min_dist=($X[0]-$X[1])**2+($Y[0]-$Y[1])**2+($Z[0]-$Z[1])**2;
- my $max_Z=$Z[0];
- my $I=0;
- my $J=1;
- for $i (1..$#Z){
- if ($Z[$i]>=$max_Z){
- $max_Z=$Z[$i];
- $I=$i;}
- }
- for $j (0..$#X){
- if ($j!=$I){
- $dist=(($X[$I]-$X[$j])**2+($Y[$I]-$Y[$j])**2+($Z[$I]-$Z[$j])**2);
- if ($min_dist>$dist){
- $min_dist=$dist;
- $J=$j;
- }}}
- return ($I,$J);
- }
- sub find_branch{
- my $X1=$_[0];
- my $Y1=$_[1];
- my $Z1=$_[2];
- my $X2=$_[3];
- my $Y2=$_[4];
- my $Z2=$_[5];
- $rXY=sqrt(($X1-$X2)**2+($Y1-$Y2)**2);
- if (abs($Z1-$Z2) < $rXY) {
- $Z_branch=($Z1+$Z2-$rXY)/2;
- $a=($Z1-$Z_branch)/$rXY;
- $X_branch=(1-$a)*$X1+$a*$X2;
- $Y_branch=(1-$a)*$Y1+$a*$Y2;
- }
- elsif ($Z1 < $Z2) {
- $X_branch=$X1;
- $Y_branch=$Y1;
- $Z_branch=$Z1;
- }
- else {
- $X_branch=$X2;
- $Y_branch=$Y2;
- $Z_branch=$Z2;
- }
- return ($X_branch,$Y_branch,$Z_branch);
- }
- sub clip_with_shape {
- my ($self, $support, $shape) = @_;
- foreach my $i (keys %$support) {
- # don't clip bottom layer with shape so that we
- # can generate a continuous base flange
- # also don't clip raft layers
- next if $i == 0;
- next if $i < $self->object_config->raft_layers;
- $support->{$i} = intersection(
- $support->{$i},
- $shape->[$i],
- );
- }
- }
- # this method returns the indices of the layers overlapping with the given one
- sub overlapping_layers {
- my ($self, $i, $support_z) = @_;
- my $zmax = $support_z->[$i];
- my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
- return grep {
- my $zmax2 = $support_z->[$_];
- my $zmin2 = ($_ == 0) ? 0 : $support_z->[$_-1];
- $zmax > $zmin2 && $zmin < $zmax2;
- } 0..$#$support_z;
- }
- sub contact_distance {
- my ($self, $layer_height, $nozzle_diameter) = @_;
- my $extra = $self->object_config->support_material_contact_distance;
- if ($extra == 0) {
- return $layer_height;
- } else {
- return $nozzle_diameter + $extra;
- }
- }
- 1;
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement