Advertisement
Guest User

Modified Slic3r Code

a guest
Mar 21st, 2019
205
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 45.49 KB | None | 0 0
  1. # Instantiated by Slic3r::Print::Object->_support_material()
  2. # only generate() and contact_distance() are called from the outside of this module.
  3. package Slic3r::Print::SupportMaterial;
  4. use Moo;
  5. use 5.010;
  6. use Math::Trig ':radial';
  7. use Math::Trig;
  8. use List::Util qw(max min);
  9. use List::Util qw(sum min max);
  10. use Slic3r::ExtrusionPath ':roles';
  11. use Slic3r::Flow ':roles';
  12. use Slic3r::Geometry qw(epsilon scale scaled_epsilon PI rad2deg deg2rad convex_hull);
  13. use Slic3r::Geometry::Clipper qw(offset diff union union_ex intersection offset_ex offset2
  14. intersection_pl offset2_ex diff_pl diff_ex);
  15. use Slic3r::Surface ':types';
  16.  
  17. has 'print_config' => (is => 'rw', required => 1);
  18. has 'object_config' => (is => 'rw', required => 1);
  19. has 'flow' => (is => 'rw', required => 1);
  20. has 'first_layer_flow' => (is => 'rw', required => 1);
  21. has 'interface_flow' => (is => 'rw', required => 1);
  22.  
  23. use constant DEBUG_CONTACT_ONLY => 0;
  24.  
  25. # increment used to reach MARGIN in steps to avoid trespassing thin objects
  26. use constant MARGIN_STEP => MARGIN/3;
  27.  
  28. #The coordinates of the points that is to be supported.
  29. my $min_X=0;
  30. my $max_X=20;
  31. my $min_Y=0;
  32. my $max_Y=20;
  33. my $distance=10;
  34. my $Z;
  35. my $i;
  36. my $j;
  37. my $I;
  38. my $J;
  39. my $X_ref;
  40. my $Y_ref;
  41. my @Z;
  42. my @Y;
  43. my @X;
  44. my $X_branch;
  45. my $Y_branch;
  46. my $Z_branch;
  47. my @X_list;
  48. my @Y_list;
  49. my @Z_list;
  50. my @X_values;
  51. my @Y_values;
  52. my $dist;
  53. my $rXY;
  54. my $theta;
  55. my $phi;
  56. my $output;
  57. my $outfile;
  58. my $rho;
  59. #The minimum angle from horizontl your printer can make, in degrees
  60. my $min_angle= 40;
  61.  
  62. #Ignore the next line, it is not an input parameter.
  63. ($X_ref,$Y_ref)=grid($min_X,$max_X,$min_Y,$max_Y,$distance);@X=@$X_ref;@Y=@{$Y_ref};
  64. for $i (0..$#X){
  65. $Z[$i]=20;#The function that defined the height of each point. This setting wil give you a flat roof. For a more advanced tree, try:
  66. #$Z[$i]=-0.01*$X[$i]**2+0.2*$Y[$i]-0.005*$Y[$i]**2+20;
  67. }
  68.  
  69. my $min_radian = deg2rad($min_angle);
  70. my $b = tan($min_radian);
  71. @Z=map{$_/$b}@Z;
  72. open $output;
  73.  
  74. print $output "width=2;\n";
  75. print $output "sphere_radius=0;\n";
  76. print $output "base_plate_size=10;\n\n";
  77.  
  78.  
  79. sub generate {
  80. # $object is Slic3r::Print::Object
  81. my ($self, $object) = @_;
  82.  
  83. # Determine the top surfaces of the support, defined as:
  84. # contact = overhangs - clearance + margin
  85. # This method is responsible for identifying what contact surfaces
  86. # should the support material expose to the object in order to guarantee
  87. # that it will be effective, regardless of how it's built below.
  88. my ($contact, $overhang) = $self->contact_area($object);
  89.  
  90. # Determine the top surfaces of the object. We need these to determine
  91. # the layer heights of support material and to clip support to the object
  92. # silhouette.
  93. my ($top) = $self->object_top($object, $contact);
  94.  
  95. # We now know the upper and lower boundaries for our support material object
  96. # (@$contact_z and @$top_z), so we can generate intermediate layers.
  97. my $support_z = $self->support_layers_z(
  98. [ sort keys %$contact ],
  99. [ sort keys %$top ],
  100. max(map $_->height, @{$object->layers})
  101. );
  102.  
  103. # If we wanted to apply some special logic to the first support layers lying on
  104. # object's top surfaces this is the place to detect them
  105.  
  106. my $shape = [];
  107. if ($self->object_config->support_material_pattern eq 'pillars') {
  108. $self->grid($min_X,$max_X,$min_Y,$max_Y,$distance);
  109. }
  110.  
  111. # Propagate contact layers downwards to generate interface layers
  112. my ($interface) = $self->generate_interface_layers($support_z, $contact, $top);
  113. $self->clip_with_object($interface, $support_z, $object);
  114. $self->clip_with_shape($interface, $shape) if @$shape;
  115.  
  116. # Propagate contact layers and interface layers downwards to generate
  117. # the main support layers.
  118. my ($base) = $self->generate_base_layers($support_z, $contact, $interface, $top);
  119. $self->clip_with_object($base, $support_z, $object);
  120. $self->clip_with_shape($base, $shape) if @$shape;
  121.  
  122. # Detect what part of base support layers are "reverse interfaces" because they
  123. # lie above object's top surfaces.
  124. $self->generate_bottom_interface_layers($support_z, $base, $top, $interface);
  125.  
  126. # Install support layers into object.
  127. for my $i (0 .. $#$support_z) {
  128. $object->add_support_layer(
  129. $i, # id
  130. ($i == 0) ? $support_z->[$i] : ($support_z->[$i] - $support_z->[$i-1]), # height
  131. $support_z->[$i], # print_z
  132. );
  133. if ($i >= 1) {
  134. $object->support_layers->[-2]->set_upper_layer($object->support_layers->[-1]);
  135. $object->support_layers->[-1]->set_lower_layer($object->support_layers->[-2]);
  136. }
  137. }
  138.  
  139. # Generate the actual toolpaths and save them into each layer.
  140. $self->generate_toolpaths($object, $overhang, $contact, $interface, $base);
  141. }
  142.  
  143. sub contact_area {
  144. # $object is Slic3r::Print::Object
  145. my ($self, $object) = @_;
  146. my $conf = $self->object_config;
  147.  
  148. # if user specified a custom angle threshold, convert it to radians
  149. my $threshold_rad;
  150. if (!($conf->support_material_threshold =~ /%$/)) {
  151. $threshold_rad = deg2rad($conf->support_material_threshold + 1); # +1 makes the threshold inclusive
  152. Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
  153. }
  154.  
  155. # Build support on a build plate only? If so, then collect top surfaces into $buildplate_only_top_surfaces
  156. # and subtract $buildplate_only_top_surfaces from the contact surfaces, so
  157. # there is no contact surface supported by a top surface.
  158. my $buildplate_only =
  159. ( $conf->support_material || $conf->support_material_enforce_layers)
  160. && $conf->support_material_buildplate_only;
  161. my $buildplate_only_top_surfaces = [];
  162.  
  163. # determine contact areas
  164. my %contact = (); # contact_z => [ polygons ]
  165. my %overhang = (); # contact_z => [ polygons ] - this stores the actual overhang supported by each contact layer
  166. for my $layer_id (0 .. $#{$object->layers}) {
  167. # note $layer_id might != $layer->id when raft_layers > 0
  168. # so $layer_id == 0 means first object layer
  169. # and $layer->id == 0 means first print layer (including raft)
  170.  
  171. # if no raft, and we're at layer 0, skip to layer 1
  172. if ( $conf->raft_layers == 0 && $layer_id == 0 ) {
  173. next;
  174. }
  175. # with or without raft, if we're above layer 1, we need to quit
  176. # support generation if supports are disabled, or if we're at a high
  177. # enough layer that enforce-supports no longer applies
  178. if ( $layer_id > 0
  179. && !$conf->support_material
  180. && ($layer_id >= $conf->support_material_enforce_layers) ) {
  181. # if we are only going to generate raft just check
  182. # the 'overhangs' of the first object layer
  183. last;
  184. }
  185. my $layer = $object->get_layer($layer_id);
  186. last if $conf->support_material_max_layers
  187. && $layer_id > $conf->support_material_max_layers;
  188.  
  189. if ($buildplate_only) {
  190. # Collect the top surfaces up to this layer and merge them.
  191. my $projection_new = [];
  192. push @$projection_new, ( map $_->p, map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions} );
  193. if (@$projection_new) {
  194. # Merge the new top surfaces with the preceding top surfaces.
  195. # Apply the safety offset to the newly added polygons, so they will connect
  196. # with the polygons collected before,
  197. # but don't apply the safety offset during the union operation as it would
  198. # inflate the polygons over and over.
  199. push @$buildplate_only_top_surfaces, @{ offset($projection_new, scale(0.01)) };
  200. $buildplate_only_top_surfaces = union($buildplate_only_top_surfaces, 0);
  201. }
  202. }
  203.  
  204. # detect overhangs and contact areas needed to support them
  205. my (@overhang, @contact) = ();
  206. if ($layer_id == 0) {
  207. # this is the first object layer, so we're here just to get the object
  208. # footprint for the raft
  209. # we only consider contours and discard holes to get a more continuous raft
  210. push @overhang, map $_->clone, map $_->contour, @{$layer->slices};
  211. push @contact, @{offset(\@overhang, scale +MARGIN)};
  212. } else {
  213. my $lower_layer = $object->get_layer($layer_id-1);
  214. foreach my $layerm (@{$layer->regions}) {
  215. my $fw = $layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER)->scaled_width;
  216. my $diff;
  217.  
  218. # If a threshold angle was specified, use a different logic for detecting overhangs.
  219. if (($conf->support_material && defined $threshold_rad)
  220. || $layer_id <= $conf->support_material_enforce_layers
  221. || ($conf->raft_layers > 0 && $layer_id == 0)) {
  222. my $d = 0;
  223. my $layer_threshold_rad = $threshold_rad;
  224. if ($layer_id <= $conf->support_material_enforce_layers) {
  225. # Use ~45 deg number for enforced supports if we are in auto
  226. $layer_threshold_rad = deg2rad(89);
  227. }
  228. if (defined $layer_threshold_rad) {
  229. $d = scale $lower_layer->height
  230. * ((cos $layer_threshold_rad) / (sin $layer_threshold_rad));
  231. }
  232.  
  233. $diff = diff(
  234. [ map $_->p, @{$layerm->slices} ],
  235. offset([ map @$_, @{$lower_layer->slices} ], +$d),
  236. );
  237.  
  238. # only enforce spacing from the object ($fw/2) if the threshold angle
  239. # is not too high: in that case, $d will be very small (as we need to catch
  240. # very short overhangs), and such contact area would be eaten by the
  241. # enforced spacing, resulting in high threshold angles to be almost ignored
  242. $diff = diff(
  243. offset($diff, $d - $fw/2),
  244. [ map @$_, @{$lower_layer->slices} ],
  245. ) if $d > $fw/2;
  246. } else {
  247. $diff = diff(
  248. [ map $_->p, @{$layerm->slices} ],
  249. offset([ map @$_, @{$lower_layer->slices} ], +$conf->get_abs_value_over('support_material_threshold', $fw)),
  250. );
  251.  
  252. # collapse very tiny spots
  253. $diff = offset2($diff, -$fw/10, +$fw/10);
  254.  
  255. # $diff now contains the ring or stripe comprised between the boundary of
  256. # lower slices and the centerline of the last perimeter in this overhanging layer.
  257. # Void $diff means that there's no upper perimeter whose centerline is
  258. # outside the lower slice boundary, thus no overhang
  259. }
  260.  
  261. if ($conf->dont_support_bridges) {
  262. # compute the area of bridging perimeters
  263. my $bridged_perimeters; # Polygons
  264. {
  265. my $bridge_flow = $layerm->flow(FLOW_ROLE_PERIMETER, 1);
  266.  
  267. # Get the lower layer's slices and grow them by half the nozzle diameter
  268. # because we will consider the upper perimeters supported even if half nozzle
  269. # falls outside the lower slices.
  270. my $lower_grown_slices;
  271. {
  272. my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $layerm->region->config->perimeter_extruder-1);
  273. $lower_grown_slices = offset(
  274. [ map @$_, @{$lower_layer->slices} ],
  275. +scale($nozzle_diameter/2),
  276. );
  277. }
  278.  
  279. # Get all perimeters as polylines.
  280. # TODO: split_at_first_point() (called by as_polyline() for ExtrusionLoops)
  281. # could split a bridge mid-way
  282. my @overhang_perimeters = map $_->as_polyline, @{$layerm->perimeters->flatten};
  283.  
  284. # Only consider the overhang parts of such perimeters,
  285. # overhangs being those parts not supported by
  286. # workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
  287. $_->[0]->translate(1,0) for @overhang_perimeters;
  288. @overhang_perimeters = @{diff_pl(
  289. \@overhang_perimeters,
  290. $lower_grown_slices,
  291. )};
  292.  
  293. # only consider straight overhangs
  294. @overhang_perimeters = grep $_->is_straight, @overhang_perimeters;
  295.  
  296. # only consider overhangs having endpoints inside layer's slices
  297. foreach my $polyline (@overhang_perimeters) {
  298. $polyline->extend_start($fw);
  299. $polyline->extend_end($fw);
  300. }
  301. @overhang_perimeters = grep {
  302. $layer->slices->contains_point($_->first_point) && $layer->slices->contains_point($_->last_point)
  303. } @overhang_perimeters;
  304.  
  305. # convert bridging polylines into polygons by inflating them with their thickness
  306. {
  307. # For bridges we can't assume width is larger than spacing because they
  308. # are positioned according to non-bridging perimeters spacing.
  309. my $w = max(
  310. $bridge_flow->scaled_width,
  311. $bridge_flow->scaled_spacing,
  312. $fw, # width of external perimeters
  313. $layerm->flow(FLOW_ROLE_PERIMETER)->scaled_width,
  314. );
  315. $bridged_perimeters = union([
  316. # Also apply safety offset to ensure no gaps are left in between.
  317. map @{$_->grow($w/2 + 10)}, @overhang_perimeters
  318. ]);
  319. }
  320. }
  321.  
  322. } # if ($conf->dont_support_bridges)
  323.  
  324. if ($buildplate_only) {
  325. # Don't support overhangs above the top surfaces.
  326. # This step is done before the contact surface is calcuated by growing the overhang region.
  327. $diff = diff($diff, $buildplate_only_top_surfaces);
  328. }
  329.  
  330. next if !@$diff;
  331. push @overhang, @$diff; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
  332.  
  333. # Let's define the required contact area by using a max gap of half the upper
  334. # extrusion width and extending the area according to the configured margin.
  335. # We increment the area in steps because we don't want our support to overflow
  336. # on the other side of the object (if it's very thin).
  337. {
  338. my $slices_margin = offset([ map @$_, @{$lower_layer->slices} ], +$fw/2);
  339. if ($buildplate_only) {
  340. # Trim the inflated contact surfaces by the top surfaces as well.
  341. push @$slices_margin, map $_->clone, @{$buildplate_only_top_surfaces};
  342. $slices_margin = union($slices_margin);
  343. }
  344. for ($fw/2, map {scale MARGIN_STEP} 1..(MARGIN / MARGIN_STEP)) {
  345. $diff = diff(
  346. offset($diff, $_),
  347. $slices_margin,
  348. );
  349. }
  350. }
  351. push @contact, @$diff;
  352. }
  353. }
  354. next if !@contact;
  355.  
  356. # now apply the contact areas to the layer were they need to be made
  357. {
  358. # get the average nozzle diameter used on this layer
  359. my @nozzle_diameters = map $self->print_config->get_at('nozzle_diameter', $_),
  360. map { $_->config->perimeter_extruder-1, $_->config->infill_extruder-1, $_->config->solid_infill_extruder-1 }
  361. map $_->region, @{$layer->regions};
  362. my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
  363.  
  364. my $contact_z = $layer->print_z - $self->contact_distance($layer->height, $nozzle_diameter);
  365.  
  366. # ignore this contact area if it's too low
  367. next if $contact_z < $conf->get_value('first_layer_height') - epsilon;
  368.  
  369. $contact{$contact_z} = [ @contact ];
  370. $overhang{$contact_z} = [ @overhang ];
  371.  
  372. if (0) {
  373. require "Slic3r/SVG.pm";
  374. Slic3r::SVG::output("out\\contact_" . $contact_z . ".svg",
  375. green_expolygons => union_ex($buildplate_only_top_surfaces),
  376. blue_expolygons => union_ex(\@contact),
  377. red_expolygons => union_ex(\@overhang),
  378. );
  379. }
  380. }
  381. }
  382.  
  383. return (\%contact, \%overhang);
  384. }
  385.  
  386. sub object_top {
  387. my ($self, $object, $contact) = @_;
  388.  
  389. # find object top surfaces
  390. # we'll use them to clip our support and detect where does it stick
  391. my %top = (); # print_z => [ expolygons ]
  392. return \%top if ($self->object_config->support_material_buildplate_only);
  393.  
  394. my $projection = [];
  395. foreach my $layer (reverse @{$object->layers}) {
  396. if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) {
  397. # compute projection of the contact areas above this top layer
  398. # first add all the 'new' contact areas to the current projection
  399. # ('new' means all the areas that are lower than the last top layer
  400. # we considered)
  401. my $min_top = min(keys %top) // max(keys %$contact);
  402. # use <= instead of just < because otherwise we'd ignore any contact regions
  403. # having the same Z of top layers
  404. push @$projection, map @{$contact->{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %$contact;
  405.  
  406. # now find whether any projection falls onto this top surface
  407. my $touching = intersection($projection, [ map $_->p, @top ]);
  408. if (@$touching) {
  409. # grow top surfaces so that interface and support generation are generated
  410. # with some spacing from object - it looks we don't need the actual
  411. # top shapes so this can be done here
  412. $top{ $layer->print_z } = offset($touching, $self->flow->scaled_width);
  413. }
  414.  
  415. # remove the areas that touched from the projection that will continue on
  416. # next, lower, top surfaces
  417. $projection = diff($projection, $touching);
  418. }
  419. }
  420.  
  421. return \%top;
  422. }
  423.  
  424. sub support_layers_z {
  425. my ($self, $contact_z, $top_z, $max_object_layer_height) = @_;
  426.  
  427. # quick table to check whether a given Z is a top surface
  428. my %top = map { $_ => 1 } @$top_z;
  429.  
  430. # determine layer height for any non-contact layer
  431. # we use max() to prevent many ultra-thin layers to be inserted in case
  432. # layer_height > nozzle_diameter * 0.75
  433. my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $self->object_config->support_material_extruder-1);
  434. my $support_material_height = max($max_object_layer_height, $nozzle_diameter * 0.75);
  435. my $contact_distance = $self->contact_distance($support_material_height, $nozzle_diameter);
  436.  
  437. # initialize known, fixed, support layers
  438. my @z = sort { $a <=> $b }
  439. @$contact_z,
  440. @$top_z, # TODO: why we have this?
  441. (map $_ + $contact_distance, @$top_z);
  442.  
  443. # enforce first layer height
  444. my $first_layer_height = $self->object_config->get_value('first_layer_height');
  445. shift @z while @z && $z[0] <= $first_layer_height;
  446. unshift @z, $first_layer_height;
  447.  
  448. # add raft layers by dividing the space between first layer and
  449. # first contact layer evenly
  450. if ($self->object_config->raft_layers > 1 && @z >= 2) {
  451. # $z[1] is last raft layer (contact layer for the first layer object)
  452. my $height = ($z[1] - $z[0]) / ($self->object_config->raft_layers - 1);
  453. # since we already have two raft layers ($z[0] and $z[1]) we need to insert
  454. # raft_layers-2 more
  455. splice @z, 1, 0,
  456. map { sprintf "%.2f", $_ }
  457. map { $z[0] + $height * $_ }
  458. 1..($self->object_config->raft_layers - 2);
  459. }
  460.  
  461. # create other layers (skip raft layers as they're already done and use thicker layers)
  462. for (my $i = $#z; $i >= $self->object_config->raft_layers; $i--) {
  463. my $target_height = $support_material_height;
  464. if ($i > 0 && $top{ $z[$i-1] }) {
  465. $target_height = $nozzle_diameter;
  466. }
  467.  
  468. # enforce first layer height
  469. if (($i == 0 && $z[$i] > $target_height + $first_layer_height)
  470. || ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
  471. splice @z, $i, 0, ($z[$i] - $target_height);
  472. $i++;
  473. }
  474. }
  475.  
  476. # remove duplicates and make sure all 0.x values have the leading 0
  477. {
  478. my %sl = map { 1 * $_ => 1 } @z;
  479. @z = sort { $a <=> $b } keys %sl;
  480. }
  481.  
  482. return \@z;
  483. }
  484.  
  485. sub generate_interface_layers {
  486. my ($self, $support_z, $contact, $top) = @_;
  487.  
  488. # let's now generate interface layers below contact areas
  489. my %interface = (); # layer_id => [ polygons ]
  490. my $interface_layers_num = $self->object_config->support_material_interface_layers;
  491. for my $layer_id (0 .. $#$support_z) {
  492. my $z = $support_z->[$layer_id];
  493. my $this = $contact->{$z} // next;
  494.  
  495. # count contact layer as interface layer
  496. for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers_num; $i--) {
  497. $z = $support_z->[$i];
  498. my @overlapping_layers = $self->overlapping_layers($i, $support_z);
  499. my @overlapping_z = map $support_z->[$_], @overlapping_layers;
  500.  
  501. # Compute interface area on this layer as diff of upper contact area
  502. # (or upper interface area) and layer slices.
  503. # This diff is responsible of the contact between support material and
  504. # the top surfaces of the object. We should probably offset the top
  505. # surfaces vertically before performing the diff, but this needs
  506. # investigation.
  507. $this = $interface{$i} = diff(
  508. [
  509. @$this, # clipped projection of the current contact regions
  510. @{ $interface{$i} || [] }, # interface regions already applied to this layer
  511. ],
  512. [
  513. (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
  514. (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
  515. ],
  516. 1,
  517. );
  518. }
  519. }
  520.  
  521. return \%interface;
  522. }
  523.  
  524. sub generate_bottom_interface_layers {
  525. my ($self, $support_z, $base, $top, $interface) = @_;
  526.  
  527. # If no interface layers are allowed, don't generate bottom interface layers.
  528. return if $self->object_config->support_material_interface_layers == 0;
  529.  
  530. my $area_threshold = $self->interface_flow->scaled_spacing ** 2;
  531.  
  532. # loop through object's top surfaces
  533. foreach my $top_z (sort keys %$top) {
  534. my $this = $top->{$top_z};
  535.  
  536. # keep a count of the interface layers we generated for this top surface
  537. my $interface_layers = 0;
  538.  
  539. # loop through support layers until we find the one(s) right above the top
  540. # surface
  541. foreach my $layer_id (0 .. $#$support_z) {
  542. my $z = $support_z->[$layer_id];
  543. next unless $z > $top_z;
  544.  
  545. if ($base->{$layer_id}) {
  546. # get the support material area that should be considered interface
  547. my $interface_area = intersection(
  548. $base->{$layer_id},
  549. $this,
  550. );
  551.  
  552. # discard too small areas
  553. $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
  554.  
  555. # subtract new interface area from base
  556. $base->{$layer_id} = diff(
  557. $base->{$layer_id},
  558. $interface_area,
  559. );
  560.  
  561. # add new interface area to interface
  562. push @{$interface->{$layer_id}}, @$interface_area;
  563. }
  564.  
  565. $interface_layers++;
  566. last if $interface_layers == $self->object_config->support_material_interface_layers;
  567. }
  568. }
  569. }
  570.  
  571. sub generate_base_layers {
  572. my ($self, $support_z, $contact, $interface, $top) = @_;
  573.  
  574. # let's now generate support layers under interface layers
  575. my $base = {}; # layer_id => [ polygons ]
  576. {
  577. for my $i (reverse 0 .. $#$support_z-1) {
  578. my $z = $support_z->[$i];
  579. my @overlapping_layers = $self->overlapping_layers($i, $support_z);
  580. my @overlapping_z = map $support_z->[$_], @overlapping_layers;
  581.  
  582. # in case we have no interface layers, look at upper contact
  583. # (1 interface layer means we only have contact layer, so $interface->{$i+1} is empty)
  584. my @upper_contact = ();
  585. if ($self->object_config->support_material_interface_layers <= 1) {
  586. @upper_contact = @{ $contact->{$support_z->[$i+1]} || [] };
  587. }
  588.  
  589. $base->{$i} = diff(
  590. [
  591. @{ $base->{$i+1} || [] }, # support regions on upper layer
  592. @{ $interface->{$i+1} || [] }, # interface regions on upper layer
  593. @upper_contact, # contact regions on upper layer
  594. ],
  595. [
  596. (map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
  597. (map @$_, map $interface->{$_}, grep exists $interface->{$_}, @overlapping_layers), # interface regions on this layer
  598. (map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
  599. ],
  600. 1,
  601. );
  602. }
  603. }
  604.  
  605. return $base;
  606. }
  607.  
  608. # This method removes object silhouette from support material
  609. # (it's used with interface and base only). It removes a bit more,
  610. # leaving a thin gap between object and support in the XY plane.
  611. sub clip_with_object {
  612. my ($self, $support, $support_z, $object) = @_;
  613.  
  614. foreach my $i (keys %$support) {
  615. next if !@{$support->{$i}};
  616.  
  617. my $zmax = $support_z->[$i];
  618. my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
  619. my @layers = grep { $_->print_z > $zmin && ($_->print_z - $_->height) < $zmax }
  620. @{$object->layers};
  621.  
  622. # $layer->slices contains the full shape of layer, thus including
  623. # perimeter's width. $support contains the full shape of support
  624. # material, thus including the width of its foremost extrusion.
  625. # We leave a gap equal to a full extrusion width.
  626. $support->{$i} = diff(
  627. $support->{$i},
  628. offset([ map @$_, map @{$_->slices}, @layers ], +$self->flow->scaled_width),
  629. );
  630. }
  631. }
  632.  
  633. sub generate_toolpaths {
  634. my ($self, $object, $overhang, $contact, $interface, $base) = @_;
  635.  
  636. my $flow = $self->flow;
  637. my $interface_flow = $self->interface_flow;
  638.  
  639. # shape of contact area
  640. my $contact_loops = 1;
  641. my $circle_radius = 1.5 * $interface_flow->scaled_width;
  642. my $circle_distance = 3 * $circle_radius;
  643. my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ],
  644. (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
  645.  
  646. Slic3r::debugf "Generating patterns\n";
  647.  
  648. # prepare fillers
  649. my $pattern = $self->object_config->support_material_pattern;
  650. my @angles = ($self->object_config->support_material_angle);
  651. if ($pattern eq 'rectilinear-grid') {
  652. $pattern = 'rectilinear';
  653. push @angles, $angles[0] + 90;
  654. } elsif ($pattern eq 'pillars') {
  655. $pattern = 'honeycomb';
  656. }
  657.  
  658. my $interface_angle = $self->object_config->support_material_angle + 90;
  659. my $interface_spacing = $self->object_config->support_material_interface_spacing + $interface_flow->spacing;
  660. my $interface_density = $interface_spacing == 0 ? 1 : $interface_flow->spacing / $interface_spacing;
  661. my $support_spacing = $self->object_config->support_material_spacing + $flow->spacing;
  662. my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
  663.  
  664. my $process_layer = sub {
  665. my ($layer_id) = @_;
  666. my $layer = $object->support_layers->[$layer_id];
  667. my $z = $layer->print_z;
  668.  
  669. # we redefine flows locally by applying this layer's height
  670. my $_flow = $flow->clone;
  671. my $_interface_flow = $interface_flow->clone;
  672. $_flow->set_height($layer->height);
  673. $_interface_flow->set_height($layer->height);
  674.  
  675. my $overhang = $overhang->{$z} || [];
  676. my $contact = $contact->{$z} || [];
  677. my $interface = $interface->{$layer_id} || [];
  678. my $base = $base->{$layer_id} || [];
  679.  
  680. if (DEBUG_CONTACT_ONLY) {
  681. $interface = [];
  682. $base = [];
  683. }
  684.  
  685. if (0) {
  686. require "Slic3r/SVG.pm";
  687. Slic3r::SVG::output("layer_" . $z . ".svg",
  688. red_expolygons => union_ex($contact),
  689. green_expolygons => union_ex($interface),
  690. );
  691. }
  692.  
  693. # islands
  694. $layer->support_islands->append(@{union_ex([ @$interface, @$base, @$contact ])});
  695.  
  696. # contact
  697. my $contact_infill = [];
  698. if ($self->object_config->support_material_interface_layers == 0) {
  699. # if no interface layers were requested we treat the contact layer
  700. # exactly as a generic base layer
  701. push @$base, @$contact;
  702. } elsif (@$contact && $contact_loops > 0) {
  703. # generate the outermost loop
  704.  
  705. # find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
  706. $contact = offset($contact, -$_interface_flow->scaled_width/2);
  707.  
  708. my @loops0 = ();
  709. {
  710. # find centerline of the external loop of the contours
  711. my @external_loops = @$contact;
  712.  
  713. # only consider the loops facing the overhang
  714. {
  715. my $overhang_with_margin = offset($overhang, +$_interface_flow->scaled_width/2);
  716. @external_loops = grep {
  717. @{intersection_pl(
  718. [ $_->split_at_first_point ],
  719. $overhang_with_margin,
  720. )}
  721. } @external_loops;
  722. }
  723.  
  724. # apply a pattern to the loop
  725. my @positions = map @{Slic3r::Polygon->new(@$_)->equally_spaced_points($circle_distance)}, @external_loops;
  726. @loops0 = @{diff(
  727. [ @external_loops ],
  728. [ map { my $c = $circle->clone; $c->translate(@$_); $c } @positions ],
  729. )};
  730. }
  731.  
  732. # make more loops
  733. my @loops = @loops0;
  734. for my $i (2..$contact_loops) {
  735. my $d = ($i-1) * $_interface_flow->scaled_spacing;
  736. push @loops, @{offset2(\@loops0, -$d -0.5*$_interface_flow->scaled_spacing, +0.5*$_interface_flow->scaled_spacing)};
  737. }
  738.  
  739. # clip such loops to the side oriented towards the object
  740. @loops = @{intersection_pl(
  741. [ map $_->split_at_first_point, @loops ],
  742. offset($overhang, +scale MARGIN),
  743. )};
  744.  
  745. # add the contact infill area to the interface area
  746. # note that growing loops by $circle_radius ensures no tiny
  747. # extrusions are left inside the circles; however it creates
  748. # a very large gap between loops and contact_infill, so maybe another
  749. # solution should be found to achieve both goals
  750. $contact_infill = diff(
  751. $contact,
  752. [ map @{$_->grow($circle_radius*1.1)}, @loops ],
  753. );
  754.  
  755. # transform loops into ExtrusionPath objects
  756. my $mm3_per_mm = $_interface_flow->mm3_per_mm;
  757. @loops = map Slic3r::ExtrusionPath->new(
  758. polyline => $_,
  759. role => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
  760. mm3_per_mm => $mm3_per_mm,
  761. width => $_interface_flow->width,
  762. height => $layer->height,
  763. ), @loops;
  764.  
  765. $layer->support_interface_fills->append(@loops);
  766. }
  767.  
  768. # Allocate the fillers exclusively in the worker threads! Don't allocate them at the main thread,
  769. # as Perl copies the C++ pointers by default, so then the C++ objects are shared between threads!
  770. my %fillers = (
  771. interface => Slic3r::Filler->new_from_type('rectilinear'),
  772. support => Slic3r::Filler->new_from_type($pattern),
  773. );
  774. my $bounding_box = $object->bounding_box;
  775. $fillers{interface}->set_bounding_box($object->bounding_box);
  776. $fillers{support}->set_bounding_box($object->bounding_box);
  777.  
  778. # interface and contact infill
  779. if (@$interface || @$contact_infill) {
  780. # make interface layers alternate angles by 90 degrees
  781. my $alternate_angle = $interface_angle + (90 * (($layer_id + 1) % 2));
  782. $fillers{interface}->set_angle(deg2rad($alternate_angle));
  783. $fillers{interface}->set_min_spacing($_interface_flow->spacing);
  784.  
  785. # find centerline of the external loop
  786. $interface = offset2($interface, +scaled_epsilon, -(scaled_epsilon + $_interface_flow->scaled_width/2));
  787.  
  788. # join regions by offsetting them to ensure they're merged
  789. $interface = offset([ @$interface, @$contact_infill ], scaled_epsilon);
  790.  
  791. # turn base support into interface when it's contained in our holes
  792. # (this way we get wider interface anchoring)
  793. {
  794. my @p = @$interface;
  795. @$interface = ();
  796. foreach my $p (@p) {
  797. if ($p->is_clockwise) {
  798. my $p2 = $p->clone;
  799. $p2->make_counter_clockwise;
  800. next if !@{diff([$p2], $base, 1)};
  801. }
  802. push @$interface, $p;
  803. }
  804. }
  805. $base = diff($base, $interface);
  806.  
  807. my @paths = ();
  808. foreach my $expolygon (@{union_ex($interface)}) {
  809. my $p = $fillers{interface}->fill_surface(
  810. Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
  811. density => $interface_density,
  812. layer_height => $layer->height,
  813. complete => 1,
  814. );
  815. my $mm3_per_mm = $_interface_flow->mm3_per_mm;
  816.  
  817. push @paths, map Slic3r::ExtrusionPath->new(
  818. polyline => Slic3r::Polyline->new(@$_),
  819. role => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
  820. mm3_per_mm => $mm3_per_mm,
  821. width => $_interface_flow->width,
  822. height => $layer->height,
  823. ), @$p;
  824. }
  825.  
  826. $layer->support_interface_fills->append(@paths);
  827. }
  828.  
  829. # support or flange
  830. if (@$base) {
  831. my $filler = $fillers{support};
  832. $filler->set_angle(deg2rad($angles[ ($layer_id) % @angles ]));
  833.  
  834. # We don't use $base_flow->spacing because we need a constant spacing
  835. # value that guarantees that all layers are correctly aligned.
  836. $filler->set_min_spacing($flow->spacing);
  837.  
  838. my $density = $support_density;
  839. my $base_flow = $_flow;
  840.  
  841. # find centerline of the external loop/extrusions
  842. my $to_infill = offset2($base, +scaled_epsilon, -(scaled_epsilon + $_flow->scaled_width/2));
  843.  
  844. my @paths = ();
  845.  
  846. # base flange
  847. if ($layer_id == 0) {
  848. $filler = $fillers{interface};
  849. $filler->set_angle(deg2rad($self->object_config->support_material_angle + 90));
  850. $density = 0.5;
  851. $base_flow = $self->first_layer_flow;
  852.  
  853. # use the proper spacing for first layer as we don't need to align
  854. # its pattern to the other layers
  855. $filler->set_min_spacing($base_flow->spacing);
  856.  
  857. # subtract brim so that it goes around the object fully (and support gets its own brim)
  858. if ($self->print_config->brim_width > 0) {
  859. my $d = +scale $self->print_config->brim_width*2;
  860. $to_infill = diff_ex(
  861. $to_infill,
  862. offset($object->get_layer(0)->slices->polygons, $d),
  863. );
  864. } else {
  865. $to_infill = union_ex($to_infill);
  866. }
  867. } else {
  868. # draw a perimeter all around support infill
  869. # TODO: use brim ordering algorithm
  870. my $mm3_per_mm = $_flow->mm3_per_mm;
  871. push @paths, map Slic3r::ExtrusionPath->new(
  872. polyline => $_->split_at_first_point,
  873. role => EXTR_ROLE_SUPPORTMATERIAL,
  874. mm3_per_mm => $mm3_per_mm,
  875. width => $_flow->width,
  876. height => $layer->height,
  877. ), @$to_infill;
  878.  
  879. # TODO: use offset2_ex()
  880. $to_infill = offset_ex($to_infill, -$_flow->scaled_spacing);
  881. }
  882.  
  883. my $mm3_per_mm = $base_flow->mm3_per_mm;
  884. foreach my $expolygon (@$to_infill) {
  885. my $p = $filler->fill_surface(
  886. Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
  887. density => $density,
  888. layer_height => $layer->height,
  889. complete => 1,
  890. );
  891.  
  892. push @paths, map Slic3r::ExtrusionPath->new(
  893. polyline => Slic3r::Polyline->new(@$_),
  894. role => EXTR_ROLE_SUPPORTMATERIAL,
  895. mm3_per_mm => $mm3_per_mm,
  896. width => $base_flow->width,
  897. height => $layer->height,
  898. ), @$p;
  899. }
  900.  
  901. $layer->support_fills->append(@paths);
  902. }
  903.  
  904. if (0) {
  905. require "Slic3r/SVG.pm";
  906. Slic3r::SVG::output("islands_" . $z . ".svg",
  907. red_expolygons => union_ex($contact),
  908. green_expolygons => union_ex($interface),
  909. green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
  910. polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
  911. );
  912. }
  913. };
  914.  
  915. Slic3r::parallelize(
  916. threads => $self->print_config->threads,
  917. items => [ 0 .. $#{$object->support_layers} ],
  918. thread_cb => sub {
  919. my $q = shift;
  920. while (defined (my $layer_id = $q->dequeue)) {
  921. $process_layer->($layer_id);
  922. }
  923. },
  924. no_threads_cb => sub {
  925. $process_layer->($_) for 0 .. $#{$object->support_layers};
  926. },
  927. );
  928. }
  929.  
  930. while ($#X>0){
  931. ($I,$J)=find_min_dist(\@X,\@Y,\@Z);
  932. ($X_branch,$Y_branch,$Z_branch)=find_branch($X[$I],$Y[$I],$Z[$I],$X[$J],$Y[$J],$Z[$J]);
  933. @X_list=($X_branch,$X[$I],$X[$J]);
  934. @Y_list=($Y_branch,$Y[$I],$Y[$J]);
  935. @Z_list=($Z_branch,$Z[$I],$Z[$J]);
  936. for $j (0..$#Y_list){
  937. if (abs($X_list[$j]) < 0.001){
  938. $X_list[$j]=0;
  939. }
  940. if (abs($Y_list[$j]) < 0.001){
  941. $Y_list[$j]=0;
  942. }
  943. if (abs($Z_list[$j]) < 0.001){
  944. $Z_list[$J]=0;
  945. }
  946. }
  947. branch(\@X_list,\@Y_list,\@Z_list);
  948. splice(@X,$I,1,$X_branch);
  949. splice(@X,$J,1);
  950. splice(@Y,$I,1,$Y_branch);
  951. splice(@Y,$J,1);
  952. splice(@Z,$I,1,$Z_branch);
  953. splice(@Z,$J,1);
  954. }
  955.  
  956. print $output 'if(base_plate_size>0){';
  957. print $output "\n translate([$X[0],$Y[0],$Z[0]*$b])\n";
  958. print $output "cube([base_plate_size,base_plate_size,1],center=true);}";
  959.  
  960. sub grid{
  961. my $d=$_[4];
  962. @X_values=$_[0]/$d..$_[1]/$d;
  963. @X_values=map{$_*$d} @X_values;
  964. @Y_values=$_[2]/$d..$_[3]/$d;
  965. @Y_values=map{$_*$d} @Y_values;
  966. for $i (0..$#X_values){
  967. @Y=(@Y,@Y_values);
  968. for $j (0..$#Y_values){
  969. $X[$i*($#Y_values+1)+$j]= $X_values[$i];
  970. }
  971. }
  972. return (\@X,\@Y);
  973. }
  974.  
  975. sub branch{
  976. my @X=@{ $_[0] };
  977. my @Y=@{ $_[1] };
  978. my @Z=@{ $_[2] };
  979. @Z=map{$_*$b}@Z;
  980. for $i (1..$#X){
  981. ($rho, $theta, $phi) = cartesian_to_spherical($X[$i]-$X[0],$Y[$i]-$Y[0],$Z[$i]-$Z[0]);
  982. $phi = rad2deg($phi);
  983. if (abs($phi)<0.001){$phi=0;}
  984. $theta = rad2deg($theta)+90;
  985. if (abs($theta)<0.001){$theta=0;}
  986. if (abs($rho)>0.001){
  987. print $output "translate([$X[0],$Y[0],$Z[0]])\n";
  988. print $output "rotate([0,0,$theta])\n";
  989. print $output "rotate([$phi,0,0])\n";
  990. print $output "translate([-width/2,-width/2,0])";
  991. print $output "cube([width,width,$rho]);\n";
  992. print $output 'if (sphere_radius>0){';
  993. print $output "\n translate([$X[$i],$Y[$i],$Z[$i]])\n";
  994. print $output "sphere(sphere_radius,center=1);}\n";}
  995. }
  996. }
  997.  
  998. sub find_min_dist{
  999. my @X=@{ $_[0] };
  1000. my @Y=@{ $_[1] };
  1001. my @Z=@{ $_[2] };
  1002. my $min_dist=($X[0]-$X[1])**2+($Y[0]-$Y[1])**2+($Z[0]-$Z[1])**2;
  1003. my $max_Z=$Z[0];
  1004. my $I=0;
  1005. my $J=1;
  1006. for $i (1..$#Z){
  1007. if ($Z[$i]>=$max_Z){
  1008. $max_Z=$Z[$i];
  1009. $I=$i;}
  1010. }
  1011. for $j (0..$#X){
  1012. if ($j!=$I){
  1013. $dist=(($X[$I]-$X[$j])**2+($Y[$I]-$Y[$j])**2+($Z[$I]-$Z[$j])**2);
  1014. if ($min_dist>$dist){
  1015. $min_dist=$dist;
  1016. $J=$j;
  1017. }}}
  1018. return ($I,$J);
  1019. }
  1020.  
  1021. sub find_branch{
  1022. my $X1=$_[0];
  1023. my $Y1=$_[1];
  1024. my $Z1=$_[2];
  1025. my $X2=$_[3];
  1026. my $Y2=$_[4];
  1027. my $Z2=$_[5];
  1028. $rXY=sqrt(($X1-$X2)**2+($Y1-$Y2)**2);
  1029. if (abs($Z1-$Z2) < $rXY) {
  1030. $Z_branch=($Z1+$Z2-$rXY)/2;
  1031. $a=($Z1-$Z_branch)/$rXY;
  1032. $X_branch=(1-$a)*$X1+$a*$X2;
  1033. $Y_branch=(1-$a)*$Y1+$a*$Y2;
  1034. }
  1035. elsif ($Z1 < $Z2) {
  1036. $X_branch=$X1;
  1037. $Y_branch=$Y1;
  1038. $Z_branch=$Z1;
  1039. }
  1040. else {
  1041. $X_branch=$X2;
  1042. $Y_branch=$Y2;
  1043. $Z_branch=$Z2;
  1044. }
  1045. return ($X_branch,$Y_branch,$Z_branch);
  1046. }
  1047.  
  1048. sub clip_with_shape {
  1049. my ($self, $support, $shape) = @_;
  1050.  
  1051. foreach my $i (keys %$support) {
  1052. # don't clip bottom layer with shape so that we
  1053. # can generate a continuous base flange
  1054. # also don't clip raft layers
  1055. next if $i == 0;
  1056. next if $i < $self->object_config->raft_layers;
  1057. $support->{$i} = intersection(
  1058. $support->{$i},
  1059. $shape->[$i],
  1060. );
  1061. }
  1062. }
  1063.  
  1064. # this method returns the indices of the layers overlapping with the given one
  1065. sub overlapping_layers {
  1066. my ($self, $i, $support_z) = @_;
  1067.  
  1068. my $zmax = $support_z->[$i];
  1069. my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
  1070.  
  1071. return grep {
  1072. my $zmax2 = $support_z->[$_];
  1073. my $zmin2 = ($_ == 0) ? 0 : $support_z->[$_-1];
  1074. $zmax > $zmin2 && $zmin < $zmax2;
  1075. } 0..$#$support_z;
  1076. }
  1077.  
  1078. sub contact_distance {
  1079. my ($self, $layer_height, $nozzle_diameter) = @_;
  1080.  
  1081. my $extra = $self->object_config->support_material_contact_distance;
  1082. if ($extra == 0) {
  1083. return $layer_height;
  1084. } else {
  1085. return $nozzle_diameter + $extra;
  1086. }
  1087. }
  1088.  
  1089. 1;
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement