Advertisement
Guest User

linear_regression.py

a guest
Apr 1st, 2017
1,056
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. import os
  2. import numpy as np
  3. import tensorflow as tf
  4. import tqdm
  5. import matplotlib.pyplot as plt
  6. %matplotlib inline
  7. import seaborn
  8.  
  9. from tensorflow.python.framework import ops
  10. ops.reset_default_graph()
  11.  
  12.  
  13. sess =tf.InteractiveSession()
  14. # создадим выборку
  15. x = np.linspace(0,10, 1000)
  16. y = np.sin(x) + np.random.normal(size=len(x))
  17.  
  18. plt.plot(x,y)
  19. plt.show()
  20.  
  21. # и разобьем её на тренировочную и контрольную части
  22. train_idxes = np.random.choice(list(range(len(x))), 3 * len(x)//4)
  23. test_idxes = np.array(range(len(x)))
  24. test_idxes = np.delete(test_idxes, train_idxes)
  25.  
  26. X_Train = x[train_idxes]
  27. Y_Train = y[train_idxes]
  28.  
  29. X_Test = x[test_idxes]
  30. Y_Test = y[test_idxes]
  31.  
  32. #Создадим граф
  33. x_ = tf.placeholder(name="input", shape=[None, 1], dtype=tf.float32)
  34. y_ = tf.placeholder(name= "output", shape=[None, 1], dtype=tf.float32)
  35.  
  36. model_output = tf.Variable(tf.random_normal([1]), name='bias') + tf.Variable(tf.random_normal([1]), name='k') * x_ # k*x+b
  37.    
  38. loss = tf.reduce_mean(tf.pow(y_ - model_output, 2)) # функция потерь
  39. gd = tf.train.GradientDescentOptimizer(0.0001) #оптимизатор
  40. train_step = gd.minimize(loss)
  41. sess.run(tf.global_variables_initializer())
  42. n_epochs = 100
  43. train_errors = []
  44. test_errors = []
  45. for i in tqdm.tqdm(range(n_epochs)): # 100
  46.     _, train_err = sess.run([train_step, loss ], feed_dict={x_:X_Train.reshape((len(X_Train),1)) , y_: Y_Train.reshape((len(Y_Train),1))})
  47.     train_errors.append(train_err)
  48.     test_errors.append(sess.run(loss, feed_dict={x_:X_Test.reshape((len(X_Test),1)) , y_: Y_Test.reshape((len(Y_Test),1))}))
  49.    
  50. plt.plot(list(range(n_epochs)), train_errors, label = 'train' )
  51. plt.plot(list(range(n_epochs)), test_errors, label='test')
  52. plt.legend()
  53. plt.savefig('lin_reg.png')
  54. print(train_errors[:10])
  55. print(test_errors[:10])
  56. plt.show()
  57. plt.plot(x, y)
  58. plt.plot(x,sess.run(model_output, feed_dict={x_:x.reshape((len(x),1))}))
  59. plt.savefig("lr_forward_pass.png")
Advertisement
Advertisement
Advertisement
RAW Paste Data Copied
Advertisement