Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- <div class="section" id="list-of-all-problem-types">
- <h2>List of all Problem Types<a class="headerlink" href="#list-of-all-problem-types" title="Permalink to this headline">¶</a></h2>
- <p>The following is a list of all of the problem types that a Coding Contract can contain.
- The list contains the name of (i.e. the value returned by
- <code class="xref js js-func docutils literal notranslate"><span class="pre">getContractType()</span></code>) and a brief summary of the problem it poses.</p>
- <table border="1" class="docutils">
- <colgroup>
- <col width="31%" />
- <col width="69%" />
- </colgroup>
- <thead valign="bottom">
- <tr class="row-odd"><th class="head">Name</th>
- <th class="head">Problem Summary</th>
- </tr>
- </thead>
- <tbody valign="top">
- <tr class="row-even"><td>Find Largest Prime Factor</td>
- <td><div class="first last line-block">
- <div class="line">Given a number, find its largest prime factor. A prime factor</div>
- <div class="line">is a factor that is a prime number.</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Subarray with Maximum Sum</td>
- <td><div class="first last line-block">
- <div class="line">Given an array of integers, find the contiguous subarray (containing</div>
- <div class="line">at least one number) which has the largest sum and return that sum.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Total Ways to Sum</td>
- <td><div class="first last line-block">
- <div class="line">Given a number, how many different distinct ways can that number be written as</div>
- <div class="line">a sum of at least two positive integers?</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Total Ways to Sum II</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array with two elements. The first element is an integer n.</div>
- <div class="line">The second element is an array of numbers representing the set of available integers.</div>
- <div class="line">How many different distinct ways can that number n be written as</div>
- <div class="line">a sum of integers contained in the given set?</div>
- <div class="line">You may use each integer in the set zero or more times.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Spiralize Matrix</td>
- <td><div class="first last line-block">
- <div class="line">Given an array of array of numbers representing a 2D matrix, return the</div>
- <div class="line">elements of that matrix in clockwise spiral order.</div>
- <div class="line"><br /></div>
- <div class="line">Example: The spiral order of</div>
- <div class="line"><br /></div>
- <div class="line-block">
- <div class="line">[1, 2, 3, 4]</div>
- <div class="line">[5, 6, 7, 8]</div>
- <div class="line">[9, 10, 11, 12]</div>
- <div class="line"><br /></div>
- </div>
- <div class="line">is [1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Array Jumping Game</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array of integers where each element represents the</div>
- <div class="line">maximum possible jump distance from that position. For example, if you</div>
- <div class="line">are at position i and your maximum jump length is n, then you can jump</div>
- <div class="line">to any position from i to i+n.</div>
- <div class="line"><br /></div>
- <div class="line">Assuming you are initially positioned at the start of the array, determine</div>
- <div class="line">whether you are able to reach the last index of the array.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Array Jumping Game II</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array of integers where each element represents the</div>
- <div class="line">maximum possible jump distance from that position. For example, if you</div>
- <div class="line">are at position i and your maximum jump length is n, then you can jump</div>
- <div class="line">to any position from i to i+n.</div>
- <div class="line"><br /></div>
- <div class="line">Assuming you are initially positioned at the start of the array, determine</div>
- <div class="line">the minimum number of jumps to reach the end of the array.</div>
- <div class="line"><br /></div>
- <div class="line">If it’s impossible to reach the end, then the answer should be 0.</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Merge Overlapping Intervals</td>
- <td><div class="first last line-block">
- <div class="line">Given an array of intervals, merge all overlapping intervals. An interval</div>
- <div class="line">is an array with two numbers, where the first number is always less than</div>
- <div class="line">the second (e.g. [1, 5]).</div>
- <div class="line"><br /></div>
- <div class="line">The intervals must be returned in ASCENDING order.</div>
- <div class="line"><br /></div>
- <div class="line">Example:</div>
- <div class="line-block">
- <div class="line">[[1, 3], [8, 10], [2, 6], [10, 16]]</div>
- </div>
- <div class="line">merges into [[1, 6], [8, 16]]</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Generate IP Addresses</td>
- <td><div class="first last line-block">
- <div class="line">Given a string containing only digits, return an array with all possible</div>
- <div class="line">valid IP address combinations that can be created from the string.</div>
- <div class="line"><br /></div>
- <div class="line">An octet in the IP address cannot begin with ‘0’ unless the number itself</div>
- <div class="line">is actually 0. For example, “192.168.010.1” is NOT a valid IP.</div>
- <div class="line"><br /></div>
- <div class="line">Examples:</div>
- <div class="line-block">
- <div class="line">25525511135 -> [255.255.11.135, 255.255.111.35]</div>
- <div class="line">1938718066 -> [193.87.180.66]</div>
- </div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Algorithmic Stock Trader I</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array of numbers representing stock prices, where the</div>
- <div class="line">i-th element represents the stock price on day i.</div>
- <div class="line"><br /></div>
- <div class="line">Determine the maximum possible profit you can earn using at most one</div>
- <div class="line">transaction (i.e. you can buy an sell the stock once). If no profit</div>
- <div class="line">can be made, then the answer should be 0. Note that you must buy the stock</div>
- <div class="line">before you can sell it.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Algorithmic Stock Trader II</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array of numbers representing stock prices, where the</div>
- <div class="line">i-th element represents the stock price on day i.</div>
- <div class="line"><br /></div>
- <div class="line">Determine the maximum possible profit you can earn using as many transactions</div>
- <div class="line">as you’d like. A transaction is defined as buying and then selling one</div>
- <div class="line">share of the stock. Note that you cannot engage in multiple transactions at</div>
- <div class="line">once. In other words, you must sell the stock before you buy it again. If no</div>
- <div class="line">profit can be made, then the answer should be 0.</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Algorithmic Stock Trader III</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array of numbers representing stock prices, where the</div>
- <div class="line">i-th element represents the stock price on day i.</div>
- <div class="line"><br /></div>
- <div class="line">Determine the maximum possible profit you can earn using at most two</div>
- <div class="line">transactions. A transaction is defined as buying and then selling one share</div>
- <div class="line">of the stock. Note that you cannot engage in multiple transactions at once.</div>
- <div class="line">In other words, you must sell the stock before you buy it again. If no profit</div>
- <div class="line">can be made, then the answer should be 0.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Algorithmic Stock Trader IV</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array with two elements. The first element is an integer k.</div>
- <div class="line">The second element is an array of numbers representing stock prices, where the</div>
- <div class="line">i-th element represents the stock price on day i.</div>
- <div class="line"><br /></div>
- <div class="line">Determine the maximum possible profit you can earn using at most k transactions.</div>
- <div class="line">A transaction is defined as buying and then selling one share of the stock.</div>
- <div class="line">Note that you cannot engage in multiple transactions at once. In other words,</div>
- <div class="line">you must sell the stock before you can buy it. If no profit can be made, then</div>
- <div class="line">the answer should be 0.</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Minimum Path Sum in a Triangle</td>
- <td><div class="first last line-block">
- <div class="line">You are given a 2D array of numbers (array of array of numbers) that represents a</div>
- <div class="line">triangle (the first array has one element, and each array has one more element than</div>
- <div class="line">the one before it, forming a triangle). Find the minimum path sum from the top to the</div>
- <div class="line">bottom of the triangle. In each step of the path, you may only move to adjacent</div>
- <div class="line">numbers in the row below.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Unique Paths in a Grid I</td>
- <td><div class="first last line-block">
- <div class="line">You are given an array with two numbers: [m, n]. These numbers represent a</div>
- <div class="line">m x n grid. Assume you are initially positioned in the top-left corner of that</div>
- <div class="line">grid and that you are trying to reach the bottom-right corner. On each step,</div>
- <div class="line">you may only move down or to the right.</div>
- <div class="line"><br /></div>
- <div class="line"><br /></div>
- <div class="line">Determine how many unique paths there are from start to finish.</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Unique Paths in a Grid II</td>
- <td><div class="first last line-block">
- <div class="line">You are given a 2D array of numbers (array of array of numbers) representing</div>
- <div class="line">a grid. The 2D array contains 1’s and 0’s, where 1 represents an obstacle and</div>
- <div class="line"><br /></div>
- <div class="line">0 represents a free space.</div>
- <div class="line"><br /></div>
- <div class="line">Assume you are initially positioned in top-left corner of that grid and that you</div>
- <div class="line">are trying to reach the bottom-right corner. In each step, you may only move down</div>
- <div class="line">or to the right. Furthermore, you cannot move onto spaces which have obstacles.</div>
- <div class="line"><br /></div>
- <div class="line">Determine how many unique paths there are from start to finish.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Shortest Path in a Grid</td>
- <td><div class="first last line-block">
- <div class="line">You are given a 2D array of numbers (array of array of numbers) representing</div>
- <div class="line">a grid. The 2D array contains 1’s and 0’s, where 1 represents an obstacle and</div>
- <div class="line">0 represents a free space.</div>
- <div class="line"><br /></div>
- <div class="line">Assume you are initially positioned in top-left corner of that grid and that you</div>
- <div class="line">are trying to reach the bottom-right corner. In each step, you may move to the up,</div>
- <div class="line">down, left or right. Furthermore, you cannot move onto spaces which have obstacles.</div>
- <div class="line"><br /></div>
- <div class="line">Determine if paths exist from start to destination, and find the shortest one.</div>
- <div class="line"><br /></div>
- <div class="line">Examples:</div>
- <div class="line-block">
- <div class="line">[[0,1,0,0,0],</div>
- <div class="line-block">
- <div class="line">[0,0,0,1,0]] -> “DRRURRD”</div>
- </div>
- <div class="line">[[0,1],</div>
- <div class="line-block">
- <div class="line">[1,0]] -> “”</div>
- <div class="line"><br /></div>
- </div>
- </div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Sanitize Parentheses in Expression</td>
- <td><div class="first last line-block">
- <div class="line">Given a string with parentheses and letters, remove the minimum number of invalid</div>
- <div class="line">parentheses in order to validate the string. If there are multiple minimal ways</div>
- <div class="line">to validate the string, provide all of the possible results.</div>
- <div class="line"><br /></div>
- <div class="line">The answer should be provided as an array of strings. If it is impossible to validate</div>
- <div class="line">the string, the result should be an array with only an empty string.</div>
- <div class="line"><br /></div>
- <div class="line">Examples:</div>
- <div class="line-block">
- <div class="line">()())() -> [()()(), (())()]</div>
- <div class="line">(a)())() -> [(a)()(), (a())()]</div>
- <div class="line">)( -> [“”]</div>
- </div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Find All Valid Math Expressions</td>
- <td><div class="first last line-block">
- <div class="line">You are given a string which contains only digits between 0 and 9 as well as a target</div>
- <div class="line">number. Return all possible ways you can add the +, -, and * operators to the string</div>
- <div class="line">of digits such that it evaluates to the target number.</div>
- <div class="line"><br /></div>
- <div class="line">The answer should be provided as an array of strings containing the valid expressions.</div>
- <div class="line"><br /></div>
- <div class="line">NOTE: Numbers in an expression cannot have leading 0’s</div>
- <div class="line">NOTE: The order of evaluation expects script operator precedence</div>
- <div class="line"><br /></div>
- <div class="line">Examples:</div>
- <div class="line-block">
- <div class="line">Input: digits = “123”, target = 6</div>
- <div class="line">Output: [1+2+3, 1*2*3]</div>
- <div class="line"><br /></div>
- <div class="line">Input: digits = “105”, target = 5</div>
- <div class="line">Output: [1*0+5, 10-5]</div>
- </div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>HammingCodes: Integer to Encoded Binary</td>
- <td><div class="first last line-block">
- <div class="line">You are given a decimal value.</div>
- <div class="line">Convert it into a binary string and encode it as a ‘Hamming-Code’. eg:</div>
- <div class="line">Value 8 will result into binary ‘1000’, which will be encoded</div>
- <div class="line">with the pattern ‘pppdpddd’, where p is a paritybit and d a databit,</div>
- <div class="line">or ‘10101’ (Value 21) will result into (pppdpdddpd) ‘1001101011’.</div>
- <div class="line">NOTE: You need an parity Bit on Index 0 as an ‘overall’-paritybit.</div>
- <div class="line">NOTE 2: You should watch the HammingCode-video from 3Blue1Brown, which</div>
- <div class="line">explains the ‘rule’ of encoding,</div>
- <div class="line">including the first Index parity-bit mentioned on the first note.</div>
- <div class="line">Now the only one rule for this encoding:</div>
- <div class="line-block">
- <div class="line">It’s not allowed to add additional leading ‘0’s to the binary value</div>
- </div>
- <div class="line">That means, the binary value has to be encoded as it is</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>HammingCodes: Encoded Binary to Integer</td>
- <td><div class="first last line-block">
- <div class="line">You are given an encoded binary string.</div>
- <div class="line">Treat it as a Hammingcode with 1 ‘possible’ error on an random Index.</div>
- <div class="line">Find the ‘possible’ wrong bit, fix it and extract the decimal value, which is</div>
- <div class="line">hidden inside the string.nn”,</div>
- <div class="line">Note: The length of the binary string is dynamic, but it’s encoding/decoding is</div>
- <div class="line">following Hammings ‘rule’n”,</div>
- <div class="line">Note 2: Index 0 is an ‘overall’ parity bit. Watch the Hammingcode-video from</div>
- <div class="line">3Blue1Brown for more informationn”,</div>
- <div class="line">Note 3: There’s a ~55% chance for an altered Bit. So… MAYBE</div>
- <div class="line">there is an altered Bit 😉n”,</div>
- <div class="line">Extranote for automation: return the decimal value as a string”,</div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Proper 2-Coloring of a Graph</td>
- <td><div class="first last line-block">
- <div class="line">You are given data, representing a graph. Note that “graph”, as used here, refers to</div>
- <div class="line">the field of graph theory, and has no relation to statistics or plotting.</div>
- <div class="line"><br /></div>
- <div class="line">The first element of the data represents the number of vertices in the graph. Each</div>
- <div class="line">vertex is a unique number between 0 and ${data[0] - 1}. The next element of the data</div>
- <div class="line">represents the edges of the graph.</div>
- <div class="line"><br /></div>
- <div class="line">Two vertices u,v in a graph are said to be adjacent if there exists an edge [u,v].</div>
- <div class="line">Note that an edge [u,v] is the same as an edge [v,u], as order does not matter.</div>
- <div class="line"><br /></div>
- <div class="line">You must construct a 2-coloring of the graph, meaning that you have to assign each</div>
- <div class="line">vertex in the graph a “color”, either 0 or 1, such that no two adjacent vertices have</div>
- <div class="line">the same color. Submit your answer in the form of an array, where element i</div>
- <div class="line">represents the color of vertex i. If it is impossible to construct a 2-coloring of</div>
- <div class="line">the given graph, instead submit an empty array.</div>
- <div class="line"><br /></div>
- <div class="line">Examples:</div>
- <div class="line"><br /></div>
- <div class="line">Input: [4, [[0, 2], [0, 3], [1, 2], [1, 3]]]</div>
- <div class="line">Output: [0, 0, 1, 1]</div>
- <div class="line"><br /></div>
- <div class="line">Input: [3, [[0, 1], [0, 2], [1, 2]]]</div>
- <div class="line">Output: []</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Compression I: RLE Compression</td>
- <td><div class="first last line-block">
- <div class="line">Run-length encoding (RLE) is a data compression technique which encodes data as a</div>
- <div class="line">series of runs of a repeated single character. Runs are encoded as a length, followed</div>
- <div class="line">by the character itself. Lengths are encoded as a single ASCII digit; runs of 10</div>
- <div class="line">characters or more are encoded by splitting them into multiple runs.</div>
- <div class="line"><br /></div>
- <div class="line">You are given a string as input. Encode it using run-length encoding with the minimum</div>
- <div class="line">possible output length.</div>
- <div class="line"><br /></div>
- <div class="line">Examples:</div>
- <div class="line-block">
- <div class="line">aaaaabccc -> 5a1b3c</div>
- <div class="line">aAaAaA -> 1a1A1a1A1a1A</div>
- <div class="line">111112333 -> 511233</div>
- <div class="line">zzzzzzzzzzzzzzzzzzz -> 9z9z1z (or 9z8z2z, etc.)</div>
- </div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Compression II: LZ Decompression</td>
- <td><div class="first last line-block">
- <div class="line">Lempel-Ziv (LZ) compression is a data compression technique which encodes data using</div>
- <div class="line">references to earlier parts of the data. In this variant of LZ, data is encoded in two</div>
- <div class="line">types of chunk. Each chunk begins with a length L, encoded as a single ASCII digit</div>
- <div class="line">from 1 - 9, followed by the chunk data, which is either:</div>
- <div class="line"><br /></div>
- <div class="line-block">
- <div class="line">1. Exactly L characters, which are to be copied directly into the uncompressed data.</div>
- <div class="line">2. A reference to an earlier part of the uncompressed data. To do this, the length</div>
- <div class="line-block">
- <div class="line">is followed by a second ASCII digit X: each of the L output characters is a copy</div>
- <div class="line">of the character X places before it in the uncompressed data.</div>
- <div class="line"><br /></div>
- </div>
- </div>
- <div class="line">For both chunk types, a length of 0 instead means the chunk ends immediately, and the</div>
- <div class="line">next character is the start of a new chunk. The two chunk types alternate, starting</div>
- <div class="line">with type 1, and the final chunk may be of either type.</div>
- <div class="line"><br /></div>
- <div class="line">You are given an LZ-encoded string. Decode it and output the original string.</div>
- <div class="line"><br /></div>
- <div class="line">Example: decoding ‘5aaabb450723abb’ chunk-by-chunk</div>
- <div class="line-block">
- <div class="line">5aaabb -> aaabb</div>
- <div class="line">5aaabb45 -> aaabbaaab</div>
- <div class="line">5aaabb450 -> aaabbaaab</div>
- <div class="line">5aaabb45072 -> aaabbaaababababa</div>
- <div class="line">5aaabb450723abb -> aaabbaaababababaabb</div>
- </div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Compression III: LZ Compression</td>
- <td><div class="first last line-block">
- <div class="line">Lempel-Ziv (LZ) compression is a data compression technique which encodes data using</div>
- <div class="line">references to earlier parts of the data. In this variant of LZ, data is encoded in two</div>
- <div class="line">types of chunk. Each chunk begins with a length L, encoded as a single ASCII digit</div>
- <div class="line">from 1 - 9, followed by the chunk data, which is either:</div>
- <div class="line"><br /></div>
- <div class="line-block">
- <div class="line">1. Exactly L characters, which are to be copied directly into the uncompressed data.</div>
- <div class="line">2. A reference to an earlier part of the uncompressed data. To do this, the length</div>
- <div class="line-block">
- <div class="line">is followed by a second ASCII digit X: each of the L output characters is a copy</div>
- <div class="line">of the character X places before it in the uncompressed data.</div>
- <div class="line"><br /></div>
- </div>
- </div>
- <div class="line">For both chunk types, a length of 0 instead means the chunk ends immediately, and the</div>
- <div class="line">next character is the start of a new chunk. The two chunk types alternate, starting</div>
- <div class="line">with type 1, and the final chunk may be of either type.</div>
- <div class="line"><br /></div>
- <div class="line">You are given a string as input. Encode it using Lempel-Ziv encoding with the minimum</div>
- <div class="line">possible output length.</div>
- <div class="line"><br /></div>
- <div class="line">Examples (some have other possible encodings of minimal length):</div>
- <div class="line-block">
- <div class="line">abracadabra -> 7abracad47</div>
- <div class="line">mississippi -> 4miss433ppi</div>
- <div class="line">aAAaAAaAaAA -> 3aAA53035</div>
- <div class="line">2718281828 -> 627182844</div>
- <div class="line">abcdefghijk -> 9abcdefghi02jk</div>
- <div class="line">aaaaaaaaaaaa -> 3aaa91</div>
- <div class="line">aaaaaaaaaaaaa -> 1a91031</div>
- <div class="line">aaaaaaaaaaaaaa -> 1a91041</div>
- </div>
- </div>
- </td>
- </tr>
- <tr class="row-odd"><td>Encryption I: Caesar Cipher</td>
- <td><div class="first last line-block">
- <div class="line">Caesar cipher is one of the simplest encryption technique. It is a type of</div>
- <div class="line">substitution cipher in which each letter in the plaintext is replaced by a letter some</div>
- <div class="line">fixed number of positions down the alphabet. For example, with a left shift of 3, D</div>
- <div class="line">would be replaced by A, E would become B, and A would become X (because of rotation).</div>
- <div class="line">You are given an array with two elements. The first element is the plaintext, the</div>
- <div class="line">second element is the left shift value. Return the ciphertext as uppercase string.</div>
- <div class="line">Spaces remains the same.</div>
- </div>
- </td>
- </tr>
- <tr class="row-even"><td>Encryption II: Vigenère Cipher</td>
- <td><div class="first last line-block">
- <div class="line">Vigenère cipher is a type of polyalphabetic substitution. It uses the Vigenère square</div>
- <div class="line">to encrypt and decrypt plaintext with a keyword.</div>
- <div class="line-block">
- <div class="line">Vignenère square:</div>
- <div class="line-block">
- <div class="line-block">
- <div class="line-block">
- <div class="line">A B C D E F G H I J K L M N O P Q R S T U V W X Y Z</div>
- </div>
- <div class="line">+—————————————————-</div>
- </div>
- <div class="line">A | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z</div>
- <div class="line">B | B C D E F G H I J K L M N O P Q R S T U V W X Y Z A</div>
- <div class="line">C | C D E F G H I J K L M N O P Q R S T U V W X Y Z A B</div>
- <div class="line">D | D E F G H I J K L M N O P Q R S T U V W X Y Z A B C</div>
- <div class="line">E | E F G H I J K L M N O P Q R S T U V W X Y Z A B C D</div>
- <div class="line-block">
- <div class="line">…</div>
- </div>
- <div class="line">Y | Y Z A B C D E F G H I J K L M N O P Q R S T U V W X</div>
- <div class="line">Z | Z A B C D E F G H I J K L M N O P Q R S T U V W X Y</div>
- </div>
- </div>
- <div class="line">For encryption each letter of the plaintext is paired with the corresponding letter of</div>
- <div class="line">a repeating keyword. For example, the plaintext DASHBOARD is encrypted with the</div>
- <div class="line">keyword LINUX:</div>
- <div class="line-block">
- <div class="line">Plaintext: DASHBOARD</div>
- <div class="line">Keyword: LINUXLINU</div>
- </div>
- <div class="line">So, the first letter D is paired with the first letter of the key L. Therefore, row D</div>
- <div class="line">and column L of the Vigenère square are used to get the first cipher letter O. This</div>
- <div class="line">must be repeated for the whole ciphertext.</div>
- <div class="line">You are given an array with two elements. The first element is the plaintext, the</div>
- <div class="line">second element is the keyword. Return the ciphertext as uppercase string.</div>
- </div>
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement