Guest User

Untitled

a guest
Aug 28th, 2020
80
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. 20-08-28 10:08:46.412 - INFO: Model [SRRaGANModel] is created.
  2. 20-08-28 10:08:46.412 - INFO: Start training from epoch: 0, iter: 0
  3. I_features_i
  4. shape, torch.Size([1, 256, 32, 32])
  5. number of elements =  262144
  6. data type =  torch.float32
  7. requires gradient = True
  8. mean = -0.025, min = -0.196, max = 0.709, median = -0.029, std=0.057
  9. T_features_i
  10. shape, torch.Size([1024, 256, 1, 1])
  11. number of elements =  262144
  12. data type =  torch.float32
  13. requires gradient = False
  14. mean = -0.028, min = -0.196, max = 0.671, median = -0.031, std=0.056
  15. I_features_i
  16. shape, torch.Size([1, 256, 32, 32])
  17. number of elements =  262144
  18. data type =  torch.float32
  19. requires gradient = True
  20. mean = 0.004, min = -0.195, max = 0.649, median = -0.012, std=0.062
  21. T_features_i
  22. shape, torch.Size([1024, 256, 1, 1])
  23. number of elements =  262144
  24. data type =  torch.float32
  25. requires gradient = False
  26. mean = 0.005, min = -0.194, max = 0.665, median = -0.012, std=0.062
  27. I_features_i
  28. shape, torch.Size([1, 256, 32, 32])
  29. number of elements =  262144
  30. data type =  torch.float32
  31. requires gradient = True
  32. mean = 0.003, min = -0.199, max = 0.687, median = -0.015, std=0.062
  33. T_features_i
  34. shape, torch.Size([1024, 256, 1, 1])
  35. number of elements =  262144
  36. data type =  torch.float32
  37. requires gradient = False
  38. mean = 0.004, min = -0.198, max = 0.721, median = -0.015, std=0.062
  39. I_features_i
  40. shape, torch.Size([1, 256, 32, 32])
  41. number of elements =  262144
  42. data type =  torch.float32
  43. requires gradient = True
  44. mean = -0.012, min = -0.199, max = 0.623, median = -0.026, std=0.061
  45. T_features_i
  46. shape, torch.Size([1024, 256, 1, 1])
  47. number of elements =  262144
  48. data type =  torch.float32
  49. requires gradient = False
  50. mean = -0.012, min = -0.198, max = 0.604, median = -0.026, std=0.061
  51. I_features_i
  52. shape, torch.Size([1, 256, 32, 32])
  53. number of elements =  262144
  54. data type =  torch.float32
  55. requires gradient = True
  56. mean = -0.010, min = -0.155, max = 0.630, median = -0.025, std=0.062
  57. T_features_i
  58. shape, torch.Size([1024, 256, 1, 1])
  59. number of elements =  262144
  60. data type =  torch.float32
  61. requires gradient = False
  62. mean = -0.010, min = -0.159, max = 0.596, median = -0.025, std=0.062
  63. I_features_i
  64. shape, torch.Size([1, 256, 32, 32])
  65. number of elements =  262144
  66. data type =  torch.float32
  67. requires gradient = True
  68. mean = -0.005, min = -0.194, max = 0.646, median = -0.018, std=0.062
  69. T_features_i
  70. shape, torch.Size([1024, 256, 1, 1])
  71. number of elements =  262144
  72. data type =  torch.float32
  73. requires gradient = False
  74. mean = -0.004, min = -0.196, max = 0.625, median = -0.018, std=0.062
  75. I_features_i
  76. shape, torch.Size([1, 256, 32, 32])
  77. number of elements =  262144
  78. data type =  torch.float32
  79. requires gradient = True
  80. mean = -0.026, min = -0.208, max = 0.573, median = -0.034, std=0.057
  81. T_features_i
  82. shape, torch.Size([1024, 256, 1, 1])
  83. number of elements =  262144
  84. data type =  torch.float32
  85. requires gradient = False
  86. mean = -0.026, min = -0.207, max = 0.594, median = -0.034, std=0.057
  87. I_features_i
  88. shape, torch.Size([1, 256, 32, 32])
  89. number of elements =  262144
  90. data type =  torch.float32
  91. requires gradient = True
  92. mean = -0.014, min = -0.196, max = 0.626, median = -0.020, std=0.061
  93. T_features_i
  94. shape, torch.Size([1024, 256, 1, 1])
  95. number of elements =  262144
  96. data type =  torch.float32
  97. requires gradient = False
  98. mean = -0.013, min = -0.196, max = 0.621, median = -0.020, std=0.061
  99. I_features_i
  100. shape, torch.Size([1, 256, 32, 32])
  101. number of elements =  262144
  102. data type =  torch.float32
  103. requires gradient = True
  104. mean = 0.003, min = -0.205, max = 0.708, median = -0.013, std=0.062
  105. T_features_i
  106. shape, torch.Size([1024, 256, 1, 1])
  107. number of elements =  262144
  108. data type =  torch.float32
  109. requires gradient = False
  110. mean = 0.005, min = -0.203, max = 0.629, median = -0.012, std=0.062
  111. I_features_i
  112. shape, torch.Size([1, 256, 32, 32])
  113. number of elements =  262144
  114. data type =  torch.float32
  115. requires gradient = True
  116. mean = -0.001, min = -0.176, max = 0.547, median = -0.018, std=0.062
  117. T_features_i
  118. shape, torch.Size([1024, 256, 1, 1])
  119. number of elements =  262144
  120. data type =  torch.float32
  121. requires gradient = False
  122. mean = -0.001, min = -0.179, max = 0.561, median = -0.018, std=0.062
  123. I_features_i
  124. shape, torch.Size([1, 256, 32, 32])
  125. number of elements =  262144
  126. data type =  torch.float32
  127. requires gradient = True
  128. mean = 0.002, min = -0.190, max = 0.600, median = -0.016, std=0.062
  129. T_features_i
  130. shape, torch.Size([1024, 256, 1, 1])
  131. number of elements =  262144
  132. data type =  torch.float32
  133. requires gradient = False
  134. mean = 0.003, min = -0.185, max = 0.590, median = -0.015, std=0.062
  135. I_features_i
  136. shape, torch.Size([1, 256, 32, 32])
  137. number of elements =  262144
  138. data type =  torch.float32
  139. requires gradient = True
  140. mean = 0.001, min = -0.153, max = 0.685, median = -0.016, std=0.062
  141. T_features_i
  142. shape, torch.Size([1024, 256, 1, 1])
  143. number of elements =  262144
  144. data type =  torch.float32
  145. requires gradient = False
  146. mean = 0.002, min = -0.155, max = 0.667, median = -0.015, std=0.062
  147. I_features_i
  148. shape, torch.Size([1, 256, 32, 32])
  149. number of elements =  262144
  150. data type =  torch.float32
  151. requires gradient = True
  152. mean = -0.014, min = -0.195, max = 0.623, median = -0.021, std=0.061
  153. T_features_i
  154. shape, torch.Size([1024, 256, 1, 1])
  155. number of elements =  262144
  156. data type =  torch.float32
  157. requires gradient = False
  158. mean = -0.013, min = -0.194, max = 0.604, median = -0.020, std=0.061
  159. I_features_i
  160. shape, torch.Size([1, 256, 32, 32])
  161. number of elements =  262144
  162. data type =  torch.float32
  163. requires gradient = True
  164. mean = -0.006, min = -0.196, max = 0.612, median = -0.018, std=0.062
  165. T_features_i
  166. shape, torch.Size([1024, 256, 1, 1])
  167. number of elements =  262144
  168. data type =  torch.float32
  169. requires gradient = False
  170. mean = -0.005, min = -0.195, max = 0.625, median = -0.017, std=0.062
  171. I_features_i
  172. shape, torch.Size([1, 256, 32, 32])
  173. number of elements =  262144
  174. data type =  torch.float32
  175. requires gradient = True
  176. mean = -0.013, min = -0.196, max = 0.719, median = -0.020, std=0.061
  177. T_features_i
  178. shape, torch.Size([1024, 256, 1, 1])
  179. number of elements =  262144
  180. data type =  torch.float32
  181. requires gradient = False
  182. mean = -0.013, min = -0.196, max = 0.698, median = -0.020, std=0.061
  183. I_features_i
  184. shape, torch.Size([1, 256, 32, 32])
  185. number of elements =  262144
  186. data type =  torch.float32
  187. requires gradient = True
  188. mean = -0.010, min = -0.210, max = 0.628, median = -0.023, std=0.062
  189. T_features_i
  190. shape, torch.Size([1024, 256, 1, 1])
  191. number of elements =  262144
  192. data type =  torch.float32
  193. requires gradient = False
  194. mean = -0.009, min = -0.210, max = 0.647, median = -0.023, std=0.062
  195. I_features_i
  196. shape, torch.Size([1, 512, 16, 16])
  197. number of elements =  131072
  198. data type =  torch.float32
  199. requires gradient = True
  200. mean = -0.014, min = -0.189, max = 0.473, median = -0.014, std=0.042
  201. T_features_i
  202. shape, torch.Size([256, 512, 1, 1])
  203. number of elements =  131072
  204. data type =  torch.float32
  205. requires gradient = False
  206. mean = -0.015, min = -0.189, max = 0.402, median = -0.015, std=0.041
  207. I_features_i
  208. shape, torch.Size([1, 512, 16, 16])
  209. number of elements =  131072
  210. data type =  torch.float32
  211. requires gradient = True
  212. mean = 0.005, min = -0.101, max = 0.520, median = -0.006, std=0.044
  213. T_features_i
  214. shape, torch.Size([256, 512, 1, 1])
  215. number of elements =  131072
  216. data type =  torch.float32
  217. requires gradient = False
  218. mean = 0.005, min = -0.109, max = 0.526, median = -0.006, std=0.044
  219. I_features_i
  220. shape, torch.Size([1, 512, 16, 16])
  221. number of elements =  131072
  222. data type =  torch.float32
  223. requires gradient = True
  224. mean = 0.002, min = -0.101, max = 0.564, median = -0.008, std=0.044
  225. T_features_i
  226. shape, torch.Size([256, 512, 1, 1])
  227. number of elements =  131072
  228. data type =  torch.float32
  229. requires gradient = False
  230. mean = 0.002, min = -0.108, max = 0.509, median = -0.007, std=0.044
  231. I_features_i
  232. shape, torch.Size([1, 512, 16, 16])
  233. number of elements =  131072
  234. data type =  torch.float32
  235. requires gradient = True
  236. mean = -0.005, min = -0.148, max = 0.570, median = -0.011, std=0.044
  237. T_features_i
  238. shape, torch.Size([256, 512, 1, 1])
  239. number of elements =  131072
  240. data type =  torch.float32
  241. requires gradient = False
  242. mean = -0.004, min = -0.141, max = 0.532, median = -0.011, std=0.044
  243. I_features_i
  244. shape, torch.Size([1, 512, 16, 16])
  245. number of elements =  131072
  246. data type =  torch.float32
  247. requires gradient = True
  248. mean = -0.005, min = -0.147, max = 0.582, median = -0.011, std=0.044
  249. T_features_i
  250. shape, torch.Size([256, 512, 1, 1])
  251. number of elements =  131072
  252. data type =  torch.float32
  253. requires gradient = False
  254. mean = -0.005, min = -0.148, max = 0.580, median = -0.011, std=0.044
  255. I_features_i
  256. shape, torch.Size([1, 512, 16, 16])
  257. number of elements =  131072
  258. data type =  torch.float32
  259. requires gradient = True
  260. mean = -0.003, min = -0.154, max = 0.515, median = -0.010, std=0.044
  261. T_features_i
  262. shape, torch.Size([256, 512, 1, 1])
  263. number of elements =  131072
  264. data type =  torch.float32
  265. requires gradient = False
  266. mean = -0.003, min = -0.158, max = 0.508, median = -0.010, std=0.044
  267. I_features_i
  268. shape, torch.Size([1, 512, 16, 16])
  269. number of elements =  131072
  270. data type =  torch.float32
  271. requires gradient = True
  272. mean = -0.011, min = -0.188, max = 0.547, median = -0.015, std=0.043
  273. T_features_i
  274. shape, torch.Size([256, 512, 1, 1])
  275. number of elements =  131072
  276. data type =  torch.float32
  277. requires gradient = False
  278. mean = -0.012, min = -0.188, max = 0.551, median = -0.015, std=0.043
  279. I_features_i
  280. shape, torch.Size([1, 512, 16, 16])
  281. number of elements =  131072
  282. data type =  torch.float32
  283. requires gradient = True
  284. mean = -0.006, min = -0.172, max = 0.611, median = -0.011, std=0.044
  285. T_features_i
  286. shape, torch.Size([256, 512, 1, 1])
  287. number of elements =  131072
  288. data type =  torch.float32
  289. requires gradient = False
  290. mean = -0.005, min = -0.172, max = 0.631, median = -0.011, std=0.044
  291. I_features_i
  292. shape, torch.Size([1, 512, 16, 16])
  293. number of elements =  131072
  294. data type =  torch.float32
  295. requires gradient = True
  296. mean = 0.003, min = -0.112, max = 0.488, median = -0.007, std=0.044
  297. T_features_i
  298. shape, torch.Size([256, 512, 1, 1])
  299. number of elements =  131072
  300. data type =  torch.float32
  301. requires gradient = False
  302. mean = 0.005, min = -0.092, max = 0.537, median = -0.006, std=0.044
  303. I_features_i
  304. shape, torch.Size([1, 512, 16, 16])
  305. number of elements =  131072
  306. data type =  torch.float32
  307. requires gradient = True
  308. mean = 0.002, min = -0.130, max = 0.671, median = -0.007, std=0.044
  309. T_features_i
  310. shape, torch.Size([256, 512, 1, 1])
  311. number of elements =  131072
  312. data type =  torch.float32
  313. requires gradient = False
  314. mean = 0.002, min = -0.132, max = 0.648, median = -0.007, std=0.044
  315. I_features_i
  316. shape, torch.Size([1, 512, 16, 16])
  317. number of elements =  131072
  318. data type =  torch.float32
  319. requires gradient = True
  320. mean = -0.000, min = -0.125, max = 0.549, median = -0.009, std=0.044
  321. T_features_i
  322. shape, torch.Size([256, 512, 1, 1])
  323. number of elements =  131072
  324. data type =  torch.float32
  325. requires gradient = False
  326. mean = -0.000, min = -0.123, max = 0.585, median = -0.009, std=0.044
  327. I_features_i
  328. shape, torch.Size([1, 512, 16, 16])
  329. number of elements =  131072
  330. data type =  torch.float32
  331. requires gradient = True
  332. mean = 0.001, min = -0.131, max = 0.697, median = -0.008, std=0.044
  333. T_features_i
  334. shape, torch.Size([256, 512, 1, 1])
  335. number of elements =  131072
  336. data type =  torch.float32
  337. requires gradient = False
  338. mean = 0.001, min = -0.140, max = 0.640, median = -0.008, std=0.044
  339. I_features_i
  340. shape, torch.Size([1, 512, 16, 16])
  341. number of elements =  131072
  342. data type =  torch.float32
  343. requires gradient = True
  344. mean = -0.005, min = -0.185, max = 0.570, median = -0.010, std=0.044
  345. T_features_i
  346. shape, torch.Size([256, 512, 1, 1])
  347. number of elements =  131072
  348. data type =  torch.float32
  349. requires gradient = False
  350. mean = -0.004, min = -0.185, max = 0.570, median = -0.010, std=0.044
  351. I_features_i
  352. shape, torch.Size([1, 512, 16, 16])
  353. number of elements =  131072
  354. data type =  torch.float32
  355. requires gradient = True
  356. mean = -0.002, min = -0.168, max = 0.587, median = -0.009, std=0.044
  357. T_features_i
  358. shape, torch.Size([256, 512, 1, 1])
  359. number of elements =  131072
  360. data type =  torch.float32
  361. requires gradient = False
  362. mean = -0.002, min = -0.168, max = 0.635, median = -0.010, std=0.044
  363. I_features_i
  364. shape, torch.Size([1, 512, 16, 16])
  365. number of elements =  131072
  366. data type =  torch.float32
  367. requires gradient = True
  368. mean = -0.006, min = -0.163, max = 0.611, median = -0.012, std=0.044
  369. T_features_i
  370. shape, torch.Size([256, 512, 1, 1])
  371. number of elements =  131072
  372. data type =  torch.float32
  373. requires gradient = False
  374. mean = -0.006, min = -0.163, max = 0.582, median = -0.012, std=0.044
  375. I_features_i
  376. shape, torch.Size([1, 512, 16, 16])
  377. number of elements =  131072
  378. data type =  torch.float32
  379. requires gradient = True
  380. mean = -0.003, min = -0.141, max = 0.532, median = -0.010, std=0.044
  381. T_features_i
  382. shape, torch.Size([256, 512, 1, 1])
  383. number of elements =  131072
  384. data type =  torch.float32
  385. requires gradient = False
  386. mean = -0.003, min = -0.147, max = 0.504, median = -0.010, std=0.044
  387. AMP Scaler state dict:  {'scale': 32768.0, 'growth_factor': 2.0, 'backoff_factor': 0.5, 'growth_interval': 2000, '_growth_tracker': 0}
  388. /usr/local/lib/python3.6/dist-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
  389.   "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
  390. I_features_i
  391. shape, torch.Size([1, 256, 32, 32])
  392. number of elements =  262144
  393. data type =  torch.float32
  394. requires gradient = True
  395. mean = -0.000, min = -0.188, max = 0.671, median = -0.015, std=0.063
  396. T_features_i
  397. shape, torch.Size([1024, 256, 1, 1])
  398. number of elements =  262144
  399. data type =  torch.float32
  400. requires gradient = False
  401. mean = 0.001, min = -0.188, max = 0.640, median = -0.014, std=0.062
  402. I_features_i
  403. shape, torch.Size([1, 256, 32, 32])
  404. number of elements =  262144
  405. data type =  torch.float32
  406. requires gradient = True
  407. mean = -0.001, min = -0.192, max = 0.596, median = -0.014, std=0.062
  408. T_features_i
  409. shape, torch.Size([1024, 256, 1, 1])
  410. number of elements =  262144
  411. data type =  torch.float32
  412. requires gradient = False
  413. mean = -0.001, min = -0.193, max = 0.600, median = -0.014, std=0.062
  414. I_features_i
  415. shape, torch.Size([1, 256, 32, 32])
  416. number of elements =  262144
  417. data type =  torch.float32
  418. requires gradient = True
  419. mean = -0.010, min = -0.190, max = 0.615, median = -0.020, std=0.062
  420. T_features_i
  421. shape, torch.Size([1024, 256, 1, 1])
  422. number of elements =  262144
  423. data type =  torch.float32
  424. requires gradient = False
  425. mean = -0.010, min = -0.189, max = 0.607, median = -0.020, std=0.062
  426. I_features_i
  427. shape, torch.Size([1, 256, 32, 32])
  428. number of elements =  262144
  429. data type =  torch.float32
  430. requires gradient = True
  431. mean = -0.022, min = -0.199, max = 0.672, median = -0.031, std=0.058
  432. T_features_i
  433. shape, torch.Size([1024, 256, 1, 1])
  434. number of elements =  262144
  435. data type =  torch.float32
  436. requires gradient = False
  437. mean = -0.022, min = -0.199, max = 0.686, median = -0.031, std=0.058
  438. I_features_i
  439. shape, torch.Size([1, 256, 32, 32])
  440. number of elements =  262144
  441. data type =  torch.float32
  442. requires gradient = True
  443. mean = 0.003, min = -0.195, max = 0.717, median = -0.015, std=0.062
  444. T_features_i
  445. shape, torch.Size([1024, 256, 1, 1])
  446. number of elements =  262144
  447. data type =  torch.float32
  448. requires gradient = False
  449. mean = 0.004, min = -0.193, max = 0.723, median = -0.015, std=0.062
  450. I_features_i
  451. shape, torch.Size([1, 256, 32, 32])
  452. number of elements =  262144
  453. data type =  torch.float32
  454. requires gradient = True
  455. mean = -0.001, min = -0.192, max = 0.689, median = -0.015, std=0.062
  456. T_features_i
  457. shape, torch.Size([1024, 256, 1, 1])
  458. number of elements =  262144
  459. data type =  torch.float32
  460. requires gradient = False
  461. mean = -0.001, min = -0.193, max = 0.687, median = -0.015, std=0.062
  462. I_features_i
  463. shape, torch.Size([1, 256, 32, 32])
  464. number of elements =  262144
  465. data type =  torch.float32
  466. requires gradient = True
  467. mean = 0.009, min = -0.115, max = 0.632, median = -0.011, std=0.062
  468. T_features_i
  469. shape, torch.Size([1024, 256, 1, 1])
  470. number of elements =  262144
  471. data type =  torch.float32
  472. requires gradient = False
  473. mean = 0.011, min = -0.115, max = 0.651, median = -0.010, std=0.062
  474. I_features_i
  475. shape, torch.Size([1, 256, 32, 32])
  476. number of elements =  262144
  477. data type =  torch.float32
  478. requires gradient = True
  479. mean = -0.018, min = -0.188, max = 0.605, median = -0.025, std=0.060
  480. T_features_i
  481. shape, torch.Size([1024, 256, 1, 1])
  482. number of elements =  262144
  483. data type =  torch.float32
  484. requires gradient = False
  485. mean = -0.018, min = -0.188, max = 0.620, median = -0.025, std=0.060
  486. I_features_i
  487. shape, torch.Size([1, 256, 32, 32])
  488. number of elements =  262144
  489. data type =  torch.float32
  490. requires gradient = True
  491. mean = -0.011, min = -0.185, max = 0.711, median = -0.021, std=0.062
  492. T_features_i
  493. shape, torch.Size([1024, 256, 1, 1])
  494. number of elements =  262144
  495. data type =  torch.float32
  496. requires gradient = False
  497. mean = -0.013, min = -0.186, max = 0.676, median = -0.023, std=0.061
  498. I_features_i
  499. shape, torch.Size([1, 256, 32, 32])
  500. number of elements =  262144
  501. data type =  torch.float32
  502. requires gradient = True
  503. mean = -0.005, min = -0.203, max = 0.621, median = -0.020, std=0.062
  504. T_features_i
  505. shape, torch.Size([1024, 256, 1, 1])
  506. number of elements =  262144
  507. data type =  torch.float32
  508. requires gradient = False
  509. mean = -0.005, min = -0.199, max = 0.627, median = -0.020, std=0.062
  510. I_features_i
  511. shape, torch.Size([1, 256, 32, 32])
  512. number of elements =  262144
  513. data type =  torch.float32
  514. requires gradient = True
  515. mean = -0.018, min = -0.182, max = 0.679, median = -0.030, std=0.060
  516. T_features_i
  517. shape, torch.Size([1024, 256, 1, 1])
  518. number of elements =  262144
  519. data type =  torch.float32
  520. requires gradient = False
  521. mean = -0.018, min = -0.182, max = 0.678, median = -0.030, std=0.060
  522. I_features_i
  523. shape, torch.Size([1, 256, 32, 32])
  524. number of elements =  262144
  525. data type =  torch.float32
  526. requires gradient = True
  527. mean = 0.008, min = -0.109, max = 0.642, median = -0.013, std=0.062
  528. T_features_i
  529. shape, torch.Size([1024, 256, 1, 1])
  530. number of elements =  262144
  531. data type =  torch.float32
  532. requires gradient = False
  533. mean = 0.008, min = -0.111, max = 0.597, median = -0.012, std=0.062
  534. I_features_i
  535. shape, torch.Size([1, 256, 32, 32])
  536. number of elements =  262144
  537. data type =  torch.float32
  538. requires gradient = True
  539. mean = 0.004, min = -0.195, max = 0.702, median = -0.015, std=0.062
  540. T_features_i
  541. shape, torch.Size([1024, 256, 1, 1])
  542. number of elements =  262144
  543. data type =  torch.float32
  544. requires gradient = False
  545. mean = 0.004, min = -0.193, max = 0.723, median = -0.015, std=0.062
  546. I_features_i
  547. shape, torch.Size([1, 256, 32, 32])
  548. number of elements =  262144
  549. data type =  torch.float32
  550. requires gradient = True
  551. mean = -0.027, min = -0.197, max = 0.464, median = -0.036, std=0.056
  552. T_features_i
  553. shape, torch.Size([1024, 256, 1, 1])
  554. number of elements =  262144
  555. data type =  torch.float32
  556. requires gradient = False
  557. mean = -0.027, min = -0.197, max = 0.467, median = -0.036, std=0.056
  558. I_features_i
  559. shape, torch.Size([1, 256, 32, 32])
  560. number of elements =  262144
  561. data type =  torch.float32
  562. requires gradient = True
  563. mean = -0.010, min = -0.189, max = 0.624, median = -0.021, std=0.062
  564. T_features_i
  565. shape, torch.Size([1024, 256, 1, 1])
  566. number of elements =  262144
  567. data type =  torch.float32
  568. requires gradient = False
  569. mean = -0.010, min = -0.189, max = 0.633, median = -0.021, std=0.062
  570. I_features_i
  571. shape, torch.Size([1, 256, 32, 32])
  572. number of elements =  262144
  573. data type =  torch.float32
  574. requires gradient = True
  575. mean = -0.035, min = -0.188, max = 0.591, median = -0.040, std=0.052
  576. T_features_i
  577. shape, torch.Size([1024, 256, 1, 1])
  578. number of elements =  262144
  579. data type =  torch.float32
  580. requires gradient = False
  581. mean = -0.035, min = -0.188, max = 0.590, median = -0.040, std=0.052
  582. I_features_i
  583. shape, torch.Size([1, 512, 16, 16])
  584. number of elements =  131072
  585. data type =  torch.float32
  586. requires gradient = True
  587. mean = 0.001, min = -0.137, max = 0.605, median = -0.008, std=0.044
  588. T_features_i
  589. shape, torch.Size([256, 512, 1, 1])
  590. number of elements =  131072
  591. data type =  torch.float32
  592. requires gradient = False
  593. mean = 0.002, min = -0.137, max = 0.539, median = -0.008, std=0.044
  594. I_features_i
  595. shape, torch.Size([1, 512, 16, 16])
  596. number of elements =  131072
  597. data type =  torch.float32
  598. requires gradient = True
  599. mean = 0.001, min = -0.112, max = 0.705, median = -0.008, std=0.044
  600. T_features_i
  601. shape, torch.Size([256, 512, 1, 1])
  602. number of elements =  131072
  603. data type =  torch.float32
  604. requires gradient = False
  605. mean = 0.002, min = -0.113, max = 0.711, median = -0.008, std=0.044
  606. I_features_i
  607. shape, torch.Size([1, 512, 16, 16])
  608. number of elements =  131072
  609. data type =  torch.float32
  610. requires gradient = True
  611. mean = -0.006, min = -0.178, max = 0.558, median = -0.011, std=0.044
  612. T_features_i
  613. shape, torch.Size([256, 512, 1, 1])
  614. number of elements =  131072
  615. data type =  torch.float32
  616. requires gradient = False
  617. mean = -0.006, min = -0.178, max = 0.551, median = -0.011, std=0.044
  618. I_features_i
  619. shape, torch.Size([1, 512, 16, 16])
  620. number of elements =  131072
  621. data type =  torch.float32
  622. requires gradient = True
  623. mean = -0.008, min = -0.163, max = 0.625, median = -0.014, std=0.043
  624. T_features_i
  625. shape, torch.Size([256, 512, 1, 1])
  626. number of elements =  131072
  627. data type =  torch.float32
  628. requires gradient = False
  629. mean = -0.008, min = -0.164, max = 0.641, median = -0.014, std=0.043
  630. I_features_i
  631. shape, torch.Size([1, 512, 16, 16])
  632. number of elements =  131072
  633. data type =  torch.float32
  634. requires gradient = True
  635. mean = 0.004, min = -0.095, max = 0.559, median = -0.007, std=0.044
  636. T_features_i
  637. shape, torch.Size([256, 512, 1, 1])
  638. number of elements =  131072
  639. data type =  torch.float32
  640. requires gradient = False
  641. mean = 0.004, min = -0.091, max = 0.557, median = -0.007, std=0.044
  642. I_features_i
  643. shape, torch.Size([1, 512, 16, 16])
  644. number of elements =  131072
  645. data type =  torch.float32
  646. requires gradient = True
  647. mean = -0.001, min = -0.116, max = 0.623, median = -0.009, std=0.044
  648. T_features_i
  649. shape, torch.Size([256, 512, 1, 1])
  650. number of elements =  131072
  651. data type =  torch.float32
  652. requires gradient = False
  653. mean = -0.001, min = -0.116, max = 0.641, median = -0.009, std=0.044
  654. I_features_i
  655. shape, torch.Size([1, 512, 16, 16])
  656. number of elements =  131072
  657. data type =  torch.float32
  658. requires gradient = True
  659. mean = 0.004, min = -0.077, max = 0.555, median = -0.007, std=0.044
  660. T_features_i
  661. shape, torch.Size([256, 512, 1, 1])
  662. number of elements =  131072
  663. data type =  torch.float32
  664. requires gradient = False
  665. mean = 0.005, min = -0.076, max = 0.491, median = -0.007, std=0.044
  666. I_features_i
  667. shape, torch.Size([1, 512, 16, 16])
  668. number of elements =  131072
  669. data type =  torch.float32
  670. requires gradient = True
  671. mean = -0.008, min = -0.175, max = 0.518, median = -0.012, std=0.043
  672. T_features_i
  673. shape, torch.Size([256, 512, 1, 1])
  674. number of elements =  131072
  675. data type =  torch.float32
  676. requires gradient = False
  677. mean = -0.008, min = -0.175, max = 0.528, median = -0.012, std=0.043
  678. I_features_i
  679. shape, torch.Size([1, 512, 16, 16])
  680. number of elements =  131072
  681. data type =  torch.float32
  682. requires gradient = True
  683. mean = -0.004, min = -0.156, max = 0.596, median = -0.011, std=0.044
  684. T_features_i
  685. shape, torch.Size([256, 512, 1, 1])
  686. number of elements =  131072
  687. data type =  torch.float32
  688. requires gradient = False
  689. mean = -0.006, min = -0.155, max = 0.580, median = -0.013, std=0.044
  690. I_features_i
  691. shape, torch.Size([1, 512, 16, 16])
  692. number of elements =  131072
  693. data type =  torch.float32
  694. requires gradient = True
  695. mean = 0.000, min = -0.129, max = 0.562, median = -0.009, std=0.044
  696. T_features_i
  697. shape, torch.Size([256, 512, 1, 1])
  698. number of elements =  131072
  699. data type =  torch.float32
  700. requires gradient = False
  701. mean = 0.001, min = -0.119, max = 0.540, median = -0.009, std=0.044
  702. I_features_i
  703. shape, torch.Size([1, 512, 16, 16])
  704. number of elements =  131072
  705. data type =  torch.float32
  706. requires gradient = True
  707. mean = -0.014, min = -0.160, max = 0.677, median = -0.017, std=0.042
  708. T_features_i
  709. shape, torch.Size([256, 512, 1, 1])
  710. number of elements =  131072
  711. data type =  torch.float32
  712. requires gradient = False
  713. mean = -0.014, min = -0.162, max = 0.664, median = -0.017, std=0.042
  714. I_features_i
  715. shape, torch.Size([1, 512, 16, 16])
  716. number of elements =  131072
  717. data type =  torch.float32
  718. requires gradient = True
  719. mean = 0.004, min = -0.090, max = 0.489, median = -0.007, std=0.044
  720. T_features_i
  721. shape, torch.Size([256, 512, 1, 1])
  722. number of elements =  131072
  723. data type =  torch.float32
  724. requires gradient = False
  725. mean = 0.004, min = -0.088, max = 0.525, median = -0.007, std=0.044
  726. I_features_i
  727. shape, torch.Size([1, 512, 16, 16])
  728. number of elements =  131072
  729. data type =  torch.float32
  730. requires gradient = True
  731. mean = 0.004, min = -0.099, max = 0.568, median = -0.007, std=0.044
  732. T_features_i
  733. shape, torch.Size([256, 512, 1, 1])
  734. number of elements =  131072
  735. data type =  torch.float32
  736. requires gradient = False
  737. mean = 0.004, min = -0.091, max = 0.559, median = -0.007, std=0.044
  738. I_features_i
  739. shape, torch.Size([1, 512, 16, 16])
  740. number of elements =  131072
  741. data type =  torch.float32
  742. requires gradient = True
  743. mean = -0.015, min = -0.159, max = 0.452, median = -0.019, std=0.042
  744. T_features_i
  745. shape, torch.Size([256, 512, 1, 1])
  746. number of elements =  131072
  747. data type =  torch.float32
  748. requires gradient = False
  749. mean = -0.015, min = -0.161, max = 0.447, median = -0.019, std=0.042
  750. I_features_i
  751. shape, torch.Size([1, 512, 16, 16])
  752. number of elements =  131072
  753. data type =  torch.float32
  754. requires gradient = True
  755. mean = -0.001, min = -0.131, max = 0.607, median = -0.010, std=0.044
  756. T_features_i
  757. shape, torch.Size([256, 512, 1, 1])
  758. number of elements =  131072
  759. data type =  torch.float32
  760. requires gradient = False
  761. mean = -0.002, min = -0.131, max = 0.580, median = -0.010, std=0.044
  762. I_features_i
  763. shape, torch.Size([1, 512, 16, 16])
  764. number of elements =  131072
  765. data type =  torch.float32
  766. requires gradient = True
  767. mean = -0.022, min = -0.176, max = 0.379, median = -0.022, std=0.038
  768. T_features_i
  769. shape, torch.Size([256, 512, 1, 1])
  770. number of elements =  131072
  771. data type =  torch.float32
  772. requires gradient = False
  773. mean = -0.022, min = -0.176, max = 0.379, median = -0.022, std=0.038
  774. AMP Scaler state dict:  {'scale': 16384.0, 'growth_factor': 2.0, 'backoff_factor': 0.5, 'growth_interval': 2000, '_growth_tracker': 0}
  775. 20-08-28 10:08:54.407 - INFO: <epoch:  0, iter:       2, lr:1.000e-04> contextual: 2.3027e+00
  776. I_features_i
  777. shape, torch.Size([1, 256, 32, 32])
  778. number of elements =  262144
  779. data type =  torch.float32
  780. requires gradient = True
  781. mean = -0.014, min = -0.199, max = 0.639, median = -0.024, std=0.061
  782. T_features_i
  783. shape, torch.Size([1024, 256, 1, 1])
  784. number of elements =  262144
  785. data type =  torch.float32
  786. requires gradient = False
  787. mean = -0.013, min = -0.200, max = 0.629, median = -0.023, std=0.061
  788. I_features_i
  789. shape, torch.Size([1, 256, 32, 32])
  790. number of elements =  262144
  791. data type =  torch.float32
  792. requires gradient = True
  793. mean = -0.031, min = -0.195, max = 0.595, median = -0.035, std=0.054
  794. T_features_i
  795. shape, torch.Size([1024, 256, 1, 1])
  796. number of elements =  262144
  797. data type =  torch.float32
  798. requires gradient = False
  799. mean = -0.031, min = -0.195, max = 0.594, median = -0.035, std=0.054
  800. I_features_i
  801. shape, torch.Size([1, 256, 32, 32])
  802. number of elements =  262144
  803. data type =  torch.float32
  804. requires gradient = True
  805. mean = -0.028, min = -0.240, max = 0.475, median = -0.033, std=0.056
  806. T_features_i
  807. shape, torch.Size([1024, 256, 1, 1])
  808. number of elements =  262144
  809. data type =  torch.float32
  810. requires gradient = False
  811. mean = -0.028, min = -0.237, max = 0.482, median = -0.033, std=0.056
  812. I_features_i
  813. shape, torch.Size([1, 256, 32, 32])
  814. number of elements =  262144
  815. data type =  torch.float32
  816. requires gradient = True
  817. mean = -0.000, min = -0.191, max = 0.608, median = -0.013, std=0.062
  818. T_features_i
  819. shape, torch.Size([1024, 256, 1, 1])
  820. number of elements =  262144
  821. data type =  torch.float32
  822. requires gradient = False
  823. mean = 0.000, min = -0.191, max = 0.601, median = -0.013, std=0.062
  824. I_features_i
  825. shape, torch.Size([1, 256, 32, 32])
  826. number of elements =  262144
  827. data type =  torch.float32
  828. requires gradient = True
  829. mean = -0.003, min = -0.215, max = 0.599, median = -0.015, std=0.062
  830. T_features_i
  831. shape, torch.Size([1024, 256, 1, 1])
  832. number of elements =  262144
  833. data type =  torch.float32
  834. requires gradient = False
  835. mean = -0.003, min = -0.213, max = 0.594, median = -0.015, std=0.062
  836. I_features_i
  837. shape, torch.Size([1, 256, 32, 32])
  838. number of elements =  262144
  839. data type =  torch.float32
  840. requires gradient = True
  841. mean = 0.002, min = -0.215, max = 0.710, median = -0.014, std=0.062
  842. T_features_i
  843. shape, torch.Size([1024, 256, 1, 1])
  844. number of elements =  262144
  845. data type =  torch.float32
  846. requires gradient = False
  847. mean = 0.001, min = -0.221, max = 0.718, median = -0.015, std=0.062
  848. I_features_i
  849. shape, torch.Size([1, 256, 32, 32])
  850. number of elements =  262144
  851. data type =  torch.float32
  852. requires gradient = True
  853. mean = -0.031, min = -0.195, max = 0.595, median = -0.035, std=0.054
  854. T_features_i
  855. shape, torch.Size([1024, 256, 1, 1])
  856. number of elements =  262144
  857. data type =  torch.float32
  858. requires gradient = False
  859. mean = -0.031, min = -0.195, max = 0.594, median = -0.035, std=0.054
  860. I_features_i
  861. shape, torch.Size([1, 256, 32, 32])
  862. number of elements =  262144
  863. data type =  torch.float32
  864. requires gradient = True
  865. mean = -0.013, min = -0.195, max = 0.639, median = -0.018, std=0.061
  866. T_features_i
  867. shape, torch.Size([1024, 256, 1, 1])
  868. number of elements =  262144
  869. data type =  torch.float32
  870. requires gradient = False
  871. mean = -0.013, min = -0.195, max = 0.627, median = -0.018, std=0.061
  872. I_features_i
  873. shape, torch.Size([1, 256, 32, 32])
  874. number of elements =  262144
  875. data type =  torch.float32
  876. requires gradient = True
  877. mean = 0.006, min = -0.175, max = 0.618, median = -0.012, std=0.062
  878. T_features_i
  879. shape, torch.Size([1024, 256, 1, 1])
  880. number of elements =  262144
  881. data type =  torch.float32
  882. requires gradient = False
  883. mean = 0.007, min = -0.166, max = 0.622, median = -0.012, std=0.062
  884. I_features_i
  885. shape, torch.Size([1, 256, 32, 32])
  886. number of elements =  262144
  887. data type =  torch.float32
  888. requires gradient = True
  889. mean = -0.007, min = -0.225, max = 0.631, median = -0.019, std=0.062
  890. T_features_i
  891. shape, torch.Size([1024, 256, 1, 1])
  892. number of elements =  262144
  893. data type =  torch.float32
  894. requires gradient = False
  895. mean = -0.007, min = -0.224, max = 0.642, median = -0.019, std=0.062
  896. I_features_i
  897. shape, torch.Size([1, 256, 32, 32])
  898. number of elements =  262144
  899. data type =  torch.float32
  900. requires gradient = True
  901. mean = -0.001, min = -0.199, max = 0.621, median = -0.013, std=0.062
  902. T_features_i
  903. shape, torch.Size([1024, 256, 1, 1])
  904. number of elements =  262144
  905. data type =  torch.float32
  906. requires gradient = False
  907. mean = -0.001, min = -0.195, max = 0.620, median = -0.013, std=0.062
  908. I_features_i
  909. shape, torch.Size([1, 256, 32, 32])
  910. number of elements =  262144
  911. data type =  torch.float32
  912. requires gradient = True
  913. mean = 0.006, min = -0.196, max = 0.639, median = -0.012, std=0.062
  914. T_features_i
  915. shape, torch.Size([1024, 256, 1, 1])
  916. number of elements =  262144
  917. data type =  torch.float32
  918. requires gradient = False
  919. mean = 0.006, min = -0.196, max = 0.668, median = -0.011, std=0.062
  920. I_features_i
  921. shape, torch.Size([1, 256, 32, 32])
  922. number of elements =  262144
  923. data type =  torch.float32
  924. requires gradient = True
  925. mean = -0.008, min = -0.202, max = 0.588, median = -0.021, std=0.062
  926. T_features_i
  927. shape, torch.Size([1024, 256, 1, 1])
  928. number of elements =  262144
  929. data type =  torch.float32
  930. requires gradient = False
  931. mean = -0.008, min = -0.201, max = 0.588, median = -0.021, std=0.062
  932. I_features_i
  933. shape, torch.Size([1, 256, 32, 32])
  934. number of elements =  262144
  935. data type =  torch.float32
  936. requires gradient = True
  937. mean = -0.014, min = -0.200, max = 0.664, median = -0.018, std=0.061
  938. T_features_i
  939. shape, torch.Size([1024, 256, 1, 1])
  940. number of elements =  262144
  941. data type =  torch.float32
  942. requires gradient = False
  943. mean = -0.014, min = -0.195, max = 0.636, median = -0.018, std=0.061
  944. I_features_i
  945. shape, torch.Size([1, 256, 32, 32])
  946. number of elements =  262144
  947. data type =  torch.float32
  948. requires gradient = True
  949. mean = -0.020, min = -0.260, max = 0.544, median = -0.027, std=0.059
  950. T_features_i
  951. shape, torch.Size([1024, 256, 1, 1])
  952. number of elements =  262144
  953. data type =  torch.float32
  954. requires gradient = False
  955. mean = -0.021, min = -0.259, max = 0.545, median = -0.027, std=0.059
  956. I_features_i
  957. shape, torch.Size([1, 256, 32, 32])
  958. number of elements =  262144
  959. data type =  torch.float32
  960. requires gradient = True
  961. mean = 0.008, min = -0.196, max = 0.627, median = -0.011, std=0.062
  962. T_features_i
  963. shape, torch.Size([1024, 256, 1, 1])
  964. number of elements =  262144
  965. data type =  torch.float32
  966. requires gradient = False
  967. mean = 0.008, min = -0.195, max = 0.601, median = -0.011, std=0.062
  968. I_features_i
  969. shape, torch.Size([1, 512, 16, 16])
  970. number of elements =  131072
  971. data type =  torch.float32
  972. requires gradient = True
  973. mean = -0.002, min = -0.192, max = 0.532, median = -0.009, std=0.044
  974. T_features_i
  975. shape, torch.Size([256, 512, 1, 1])
  976. number of elements =  131072
  977. data type =  torch.float32
  978. requires gradient = False
  979. mean = -0.002, min = -0.192, max = 0.533, median = -0.009, std=0.044
  980. I_features_i
  981. shape, torch.Size([1, 512, 16, 16])
  982. number of elements =  131072
  983. data type =  torch.float32
  984. requires gradient = True
  985. mean = -0.020, min = -0.195, max = 0.393, median = -0.020, std=0.039
  986. T_features_i
  987. shape, torch.Size([256, 512, 1, 1])
  988. number of elements =  131072
  989. data type =  torch.float32
  990. requires gradient = False
  991. mean = -0.020, min = -0.195, max = 0.394, median = -0.020, std=0.039
  992. I_features_i
  993. shape, torch.Size([1, 512, 16, 16])
  994. number of elements =  131072
  995. data type =  torch.float32
  996. requires gradient = True
  997. mean = -0.016, min = -0.205, max = 0.436, median = -0.017, std=0.041
  998. T_features_i
  999. shape, torch.Size([256, 512, 1, 1])
  1000. number of elements =  131072
  1001. data type =  torch.float32
  1002. requires gradient = False
  1003. mean = -0.016, min = -0.204, max = 0.467, median = -0.017, std=0.041
  1004. I_features_i
  1005. shape, torch.Size([1, 512, 16, 16])
  1006. number of elements =  131072
  1007. data type =  torch.float32
  1008. requires gradient = True
  1009. mean = 0.002, min = -0.146, max = 0.576, median = -0.007, std=0.044
  1010. T_features_i
  1011. shape, torch.Size([256, 512, 1, 1])
  1012. number of elements =  131072
  1013. data type =  torch.float32
  1014. requires gradient = False
  1015. mean = 0.003, min = -0.146, max = 0.574, median = -0.006, std=0.044
  1016. I_features_i
  1017. shape, torch.Size([1, 512, 16, 16])
  1018. number of elements =  131072
  1019. data type =  torch.float32
  1020. requires gradient = True
  1021. mean = -0.001, min = -0.150, max = 0.641, median = -0.009, std=0.044
  1022. T_features_i
  1023. shape, torch.Size([256, 512, 1, 1])
  1024. number of elements =  131072
  1025. data type =  torch.float32
  1026. requires gradient = False
  1027. mean = -0.001, min = -0.143, max = 0.650, median = -0.009, std=0.044
  1028. I_features_i
  1029. shape, torch.Size([1, 512, 16, 16])
  1030. number of elements =  131072
  1031. data type =  torch.float32
  1032. requires gradient = True
  1033. mean = 0.000, min = -0.143, max = 0.535, median = -0.008, std=0.044
  1034. T_features_i
  1035. shape, torch.Size([256, 512, 1, 1])
  1036. number of elements =  131072
  1037. data type =  torch.float32
  1038. requires gradient = False
  1039. mean = 0.000, min = -0.143, max = 0.510, median = -0.008, std=0.044
  1040. I_features_i
  1041. shape, torch.Size([1, 512, 16, 16])
  1042. number of elements =  131072
  1043. data type =  torch.float32
  1044. requires gradient = True
  1045. mean = -0.020, min = -0.195, max = 0.393, median = -0.020, std=0.039
  1046. T_features_i
  1047. shape, torch.Size([256, 512, 1, 1])
  1048. number of elements =  131072
  1049. data type =  torch.float32
  1050. requires gradient = False
  1051. mean = -0.020, min = -0.195, max = 0.394, median = -0.020, std=0.039
  1052. I_features_i
  1053. shape, torch.Size([1, 512, 16, 16])
  1054. number of elements =  131072
  1055. data type =  torch.float32
  1056. requires gradient = True
  1057. mean = -0.005, min = -0.194, max = 0.613, median = -0.009, std=0.044
  1058. T_features_i
  1059. shape, torch.Size([256, 512, 1, 1])
  1060. number of elements =  131072
  1061. data type =  torch.float32
  1062. requires gradient = False
  1063. mean = -0.005, min = -0.194, max = 0.536, median = -0.009, std=0.044
  1064. I_features_i
  1065. shape, torch.Size([1, 512, 16, 16])
  1066. number of elements =  131072
  1067. data type =  torch.float32
  1068. requires gradient = True
  1069. mean = 0.004, min = -0.115, max = 0.693, median = -0.006, std=0.044
  1070. T_features_i
  1071. shape, torch.Size([256, 512, 1, 1])
  1072. number of elements =  131072
  1073. data type =  torch.float32
  1074. requires gradient = False
  1075. mean = 0.005, min = -0.113, max = 0.689, median = -0.005, std=0.044
  1076. I_features_i
  1077. shape, torch.Size([1, 512, 16, 16])
  1078. number of elements =  131072
  1079. data type =  torch.float32
  1080. requires gradient = True
  1081. mean = -0.002, min = -0.205, max = 0.634, median = -0.009, std=0.044
  1082. T_features_i
  1083. shape, torch.Size([256, 512, 1, 1])
  1084. number of elements =  131072
  1085. data type =  torch.float32
  1086. requires gradient = False
  1087. mean = -0.002, min = -0.205, max = 0.624, median = -0.009, std=0.044
  1088. I_features_i
  1089. shape, torch.Size([1, 512, 16, 16])
  1090. number of elements =  131072
  1091. data type =  torch.float32
  1092. requires gradient = True
  1093. mean = 0.003, min = -0.109, max = 0.458, median = -0.007, std=0.044
  1094. T_features_i
  1095. shape, torch.Size([256, 512, 1, 1])
  1096. number of elements =  131072
  1097. data type =  torch.float32
  1098. requires gradient = False
  1099. mean = 0.003, min = -0.108, max = 0.483, median = -0.007, std=0.044
  1100. I_features_i
  1101. shape, torch.Size([1, 512, 16, 16])
  1102. number of elements =  131072
  1103. data type =  torch.float32
  1104. requires gradient = True
  1105. mean = 0.003, min = -0.130, max = 0.623, median = -0.007, std=0.044
  1106. T_features_i
  1107. shape, torch.Size([256, 512, 1, 1])
  1108. number of elements =  131072
  1109. data type =  torch.float32
  1110. requires gradient = False
  1111. mean = 0.004, min = -0.126, max = 0.621, median = -0.006, std=0.044
  1112. I_features_i
  1113. shape, torch.Size([1, 512, 16, 16])
  1114. number of elements =  131072
  1115. data type =  torch.float32
  1116. requires gradient = True
  1117. mean = -0.007, min = -0.186, max = 0.660, median = -0.012, std=0.044
  1118. T_features_i
  1119. shape, torch.Size([256, 512, 1, 1])
  1120. number of elements =  131072
  1121. data type =  torch.float32
  1122. requires gradient = False
  1123. mean = -0.007, min = -0.187, max = 0.670, median = -0.012, std=0.044
  1124. I_features_i
  1125. shape, torch.Size([1, 512, 16, 16])
  1126. number of elements =  131072
  1127. data type =  torch.float32
  1128. requires gradient = True
  1129. mean = -0.003, min = -0.179, max = 0.617, median = -0.009, std=0.044
  1130. T_features_i
  1131. shape, torch.Size([256, 512, 1, 1])
  1132. number of elements =  131072
  1133. data type =  torch.float32
  1134. requires gradient = False
  1135. mean = -0.003, min = -0.180, max = 0.582, median = -0.009, std=0.044
  1136. I_features_i
  1137. shape, torch.Size([1, 512, 16, 16])
  1138. number of elements =  131072
  1139. data type =  torch.float32
  1140. requires gradient = True
  1141. mean = -0.006, min = -0.199, max = 0.477, median = -0.011, std=0.044
  1142. T_features_i
  1143. shape, torch.Size([256, 512, 1, 1])
  1144. number of elements =  131072
  1145. data type =  torch.float32
  1146. requires gradient = False
  1147. mean = -0.006, min = -0.200, max = 0.495, median = -0.011, std=0.044
  1148. I_features_i
  1149. shape, torch.Size([1, 512, 16, 16])
  1150. number of elements =  131072
  1151. data type =  torch.float32
  1152. requires gradient = True
  1153. mean = 0.003, min = -0.115, max = 0.617, median = -0.007, std=0.044
  1154. T_features_i
  1155. shape, torch.Size([256, 512, 1, 1])
  1156. number of elements =  131072
  1157. data type =  torch.float32
  1158. requires gradient = False
  1159. mean = 0.003, min = -0.124, max = 0.576, median = -0.007, std=0.044
  1160. AMP Scaler state dict:  {'scale': 8192.0, 'growth_factor': 2.0, 'backoff_factor': 0.5, 'growth_interval': 2000, '_growth_tracker': 0}
  1161. I_features_i
  1162. shape, torch.Size([1, 256, 32, 32])
  1163. number of elements =  262144
  1164. data type =  torch.float32
  1165. requires gradient = True
  1166. mean = 0.001, min = -0.144, max = 0.584, median = -0.016, std=0.062
  1167. T_features_i
  1168. shape, torch.Size([1024, 256, 1, 1])
  1169. number of elements =  262144
  1170. data type =  torch.float32
  1171. requires gradient = False
  1172. mean = 0.001, min = -0.154, max = 0.574, median = -0.017, std=0.062
  1173. I_features_i
  1174. shape, torch.Size([1, 256, 32, 32])
  1175. number of elements =  262144
  1176. data type =  torch.float32
  1177. requires gradient = True
  1178. mean = -0.033, min = -0.196, max = 0.596, median = -0.036, std=0.053
  1179. T_features_i
  1180. shape, torch.Size([1024, 256, 1, 1])
  1181. number of elements =  262144
  1182. data type =  torch.float32
  1183. requires gradient = False
  1184. mean = -0.033, min = -0.196, max = 0.596, median = -0.036, std=0.053
  1185. I_features_i
  1186. shape, torch.Size([1, 256, 32, 32])
  1187. number of elements =  262144
  1188. data type =  torch.float32
  1189. requires gradient = True
  1190. mean = -0.018, min = -0.196, max = 0.652, median = -0.021, std=0.060
  1191. T_features_i
  1192. shape, torch.Size([1024, 256, 1, 1])
  1193. number of elements =  262144
  1194. data type =  torch.float32
  1195. requires gradient = False
  1196. mean = -0.018, min = -0.200, max = 0.659, median = -0.021, std=0.060
  1197. I_features_i
  1198. shape, torch.Size([1, 256, 32, 32])
  1199. number of elements =  262144
  1200. data type =  torch.float32
  1201. requires gradient = True
  1202. mean = -0.033, min = -0.196, max = 0.596, median = -0.036, std=0.053
  1203. T_features_i
  1204. shape, torch.Size([1024, 256, 1, 1])
  1205. number of elements =  262144
  1206. data type =  torch.float32
  1207. requires gradient = False
  1208. mean = -0.033, min = -0.196, max = 0.596, median = -0.036, std=0.053
  1209. I_features_i
  1210. shape, torch.Size([1, 256, 32, 32])
  1211. number of elements =  262144
  1212. data type =  torch.float32
  1213. requires gradient = True
  1214. mean = -0.016, min = -0.238, max = 0.734, median = -0.024, std=0.060
  1215. T_features_i
  1216. shape, torch.Size([1024, 256, 1, 1])
  1217. number of elements =  262144
  1218. data type =  torch.float32
  1219. requires gradient = False
  1220. mean = -0.016, min = -0.238, max = 0.736, median = -0.024, std=0.060
  1221. I_features_i
  1222. shape, torch.Size([1, 256, 32, 32])
  1223. number of elements =  262144
  1224. data type =  torch.float32
  1225. requires gradient = True
  1226. mean = -0.007, min = -0.235, max = 0.618, median = -0.018, std=0.062
  1227. T_features_i
  1228. shape, torch.Size([1024, 256, 1, 1])
  1229. number of elements =  262144
  1230. data type =  torch.float32
  1231. requires gradient = False
  1232. mean = -0.006, min = -0.216, max = 0.692, median = -0.018, std=0.062
  1233. I_features_i
  1234. shape, torch.Size([1, 256, 32, 32])
  1235. number of elements =  262144
  1236. data type =  torch.float32
  1237. requires gradient = True
  1238. mean = 0.002, min = -0.197, max = 0.674, median = -0.012, std=0.062
  1239. T_features_i
  1240. shape, torch.Size([1024, 256, 1, 1])
  1241. number of elements =  262144
  1242. data type =  torch.float32
  1243. requires gradient = False
  1244. mean = 0.002, min = -0.196, max = 0.660, median = -0.012, std=0.062
  1245. I_features_i
  1246. shape, torch.Size([1, 256, 32, 32])
  1247. number of elements =  262144
  1248. data type =  torch.float32
  1249. requires gradient = True
  1250. mean = 0.004, min = -0.160, max = 0.668, median = -0.014, std=0.062
  1251. T_features_i
  1252. shape, torch.Size([1024, 256, 1, 1])
  1253. number of elements =  262144
  1254. data type =  torch.float32
  1255. requires gradient = False
  1256. mean = 0.004, min = -0.163, max = 0.610, median = -0.014, std=0.062
  1257. I_features_i
  1258. shape, torch.Size([1, 256, 32, 32])
  1259. number of elements =  262144
  1260. data type =  torch.float32
  1261. requires gradient = True
  1262. mean = -0.004, min = -0.191, max = 0.651, median = -0.019, std=0.062
  1263. T_features_i
  1264. shape, torch.Size([1024, 256, 1, 1])
  1265. number of elements =  262144
  1266. data type =  torch.float32
  1267. requires gradient = False
  1268. mean = -0.004, min = -0.191, max = 0.636, median = -0.019, std=0.062
  1269. I_features_i
  1270. shape, torch.Size([1, 256, 32, 32])
  1271. number of elements =  262144
  1272. data type =  torch.float32
  1273. requires gradient = True
  1274. mean = 0.003, min = -0.191, max = 0.640, median = -0.013, std=0.062
  1275. T_features_i
  1276. shape, torch.Size([1024, 256, 1, 1])
  1277. number of elements =  262144
  1278. data type =  torch.float32
  1279. requires gradient = False
  1280. mean = 0.004, min = -0.192, max = 0.625, median = -0.012, std=0.062
  1281. I_features_i
  1282. shape, torch.Size([1, 256, 32, 32])
  1283. number of elements =  262144
  1284. data type =  torch.float32
  1285. requires gradient = True
  1286. mean = -0.013, min = -0.200, max = 0.619, median = -0.019, std=0.061
  1287. T_features_i
  1288. shape, torch.Size([1024, 256, 1, 1])
  1289. number of elements =  262144
  1290. data type =  torch.float32
  1291. requires gradient = False
  1292. mean = -0.013, min = -0.198, max = 0.665, median = -0.019, std=0.061
  1293. I_features_i
  1294. shape, torch.Size([1, 256, 32, 32])
  1295. number of elements =  262144
  1296. data type =  torch.float32
  1297. requires gradient = True
  1298. mean = -0.007, min = -0.207, max = 0.674, median = -0.014, std=0.062
  1299. T_features_i
  1300. shape, torch.Size([1024, 256, 1, 1])
  1301. number of elements =  262144
  1302. data type =  torch.float32
  1303. requires gradient = False
  1304. mean = -0.008, min = -0.206, max = 0.653, median = -0.014, std=0.062
  1305. I_features_i
  1306. shape, torch.Size([1, 256, 32, 32])
  1307. number of elements =  262144
  1308. data type =  torch.float32
  1309. requires gradient = True
  1310. mean = -0.009, min = -0.227, max = 0.650, median = -0.022, std=0.062
  1311. T_features_i
  1312. shape, torch.Size([1024, 256, 1, 1])
  1313. number of elements =  262144
  1314. data type =  torch.float32
  1315. requires gradient = False
  1316. mean = -0.010, min = -0.226, max = 0.676, median = -0.022, std=0.062
  1317. I_features_i
  1318. shape, torch.Size([1, 256, 32, 32])
  1319. number of elements =  262144
  1320. data type =  torch.float32
  1321. requires gradient = True
  1322. mean = -0.016, min = -0.197, max = 0.675, median = -0.020, std=0.060
  1323. T_features_i
  1324. shape, torch.Size([1024, 256, 1, 1])
  1325. number of elements =  262144
  1326. data type =  torch.float32
  1327. requires gradient = False
  1328. mean = -0.016, min = -0.197, max = 0.682, median = -0.020, std=0.060
  1329. I_features_i
  1330. shape, torch.Size([1, 256, 32, 32])
  1331. number of elements =  262144
  1332. data type =  torch.float32
  1333. requires gradient = True
  1334. mean = 0.005, min = -0.192, max = 0.634, median = -0.013, std=0.062
  1335. T_features_i
  1336. shape, torch.Size([1024, 256, 1, 1])
  1337. number of elements =  262144
  1338. data type =  torch.float32
  1339. requires gradient = False
  1340. mean = 0.006, min = -0.191, max = 0.629, median = -0.012, std=0.062
  1341. I_features_i
  1342. shape, torch.Size([1, 256, 32, 32])
  1343. number of elements =  262144
  1344. data type =  torch.float32
  1345. requires gradient = True
  1346. mean = -0.004, min = -0.215, max = 0.584, median = -0.019, std=0.062
  1347. T_features_i
  1348. shape, torch.Size([1024, 256, 1, 1])
  1349. number of elements =  262144
  1350. data type =  torch.float32
  1351. requires gradient = False
  1352. mean = -0.004, min = -0.210, max = 0.592, median = -0.019, std=0.062
  1353. I_features_i
  1354. shape, torch.Size([1, 512, 16, 16])
  1355. number of elements =  131072
  1356. data type =  torch.float32
  1357. requires gradient = True
  1358. mean = -0.003, min = -0.161, max = 0.469, median = -0.009, std=0.044
  1359. T_features_i
  1360. shape, torch.Size([256, 512, 1, 1])
  1361. number of elements =  131072
  1362. data type =  torch.float32
  1363. requires gradient = False
  1364. mean = -0.003, min = -0.162, max = 0.466, median = -0.009, std=0.044
  1365. I_features_i
  1366. shape, torch.Size([1, 512, 16, 16])
  1367. number of elements =  131072
  1368. data type =  torch.float32
  1369. requires gradient = True
  1370. mean = -0.021, min = -0.181, max = 0.379, median = -0.020, std=0.039
  1371. T_features_i
  1372. shape, torch.Size([256, 512, 1, 1])
  1373. number of elements =  131072
  1374. data type =  torch.float32
  1375. requires gradient = False
  1376. mean = -0.021, min = -0.181, max = 0.380, median = -0.020, std=0.039
  1377. I_features_i
  1378. shape, torch.Size([1, 512, 16, 16])
  1379. number of elements =  131072
  1380. data type =  torch.float32
  1381. requires gradient = True
  1382. mean = -0.006, min = -0.179, max = 0.585, median = -0.010, std=0.044
  1383. T_features_i
  1384. shape, torch.Size([256, 512, 1, 1])
  1385. number of elements =  131072
  1386. data type =  torch.float32
  1387. requires gradient = False
  1388. mean = -0.006, min = -0.179, max = 0.563, median = -0.010, std=0.044
  1389. I_features_i
  1390. shape, torch.Size([1, 512, 16, 16])
  1391. number of elements =  131072
  1392. data type =  torch.float32
  1393. requires gradient = True
  1394. mean = -0.021, min = -0.181, max = 0.379, median = -0.020, std=0.039
  1395. T_features_i
  1396. shape, torch.Size([256, 512, 1, 1])
  1397. number of elements =  131072
  1398. data type =  torch.float32
  1399. requires gradient = False
  1400. mean = -0.021, min = -0.181, max = 0.380, median = -0.020, std=0.039
  1401. I_features_i
  1402. shape, torch.Size([1, 512, 16, 16])
  1403. number of elements =  131072
  1404. data type =  torch.float32
  1405. requires gradient = True
  1406. mean = -0.004, min = -0.200, max = 0.529, median = -0.009, std=0.044
  1407. T_features_i
  1408. shape, torch.Size([256, 512, 1, 1])
  1409. number of elements =  131072
  1410. data type =  torch.float32
  1411. requires gradient = False
  1412. mean = -0.004, min = -0.200, max = 0.552, median = -0.009, std=0.044
  1413. I_features_i
  1414. shape, torch.Size([1, 512, 16, 16])
  1415. number of elements =  131072
  1416. data type =  torch.float32
  1417. requires gradient = True
  1418. mean = -0.003, min = -0.151, max = 0.652, median = -0.010, std=0.044
  1419. T_features_i
  1420. shape, torch.Size([256, 512, 1, 1])
  1421. number of elements =  131072
  1422. data type =  torch.float32
  1423. requires gradient = False
  1424. mean = -0.003, min = -0.158, max = 0.693, median = -0.010, std=0.044
  1425. I_features_i
  1426. shape, torch.Size([1, 512, 16, 16])
  1427. number of elements =  131072
  1428. data type =  torch.float32
  1429. requires gradient = True
  1430. mean = 0.002, min = -0.163, max = 0.611, median = -0.006, std=0.044
  1431. T_features_i
  1432. shape, torch.Size([256, 512, 1, 1])
  1433. number of elements =  131072
  1434. data type =  torch.float32
  1435. requires gradient = False
  1436. mean = 0.002, min = -0.165, max = 0.594, median = -0.006, std=0.044
  1437. I_features_i
  1438. shape, torch.Size([1, 512, 16, 16])
  1439. number of elements =  131072
  1440. data type =  torch.float32
  1441. requires gradient = True
  1442. mean = 0.002, min = -0.123, max = 0.504, median = -0.007, std=0.044
  1443. T_features_i
  1444. shape, torch.Size([256, 512, 1, 1])
  1445. number of elements =  131072
  1446. data type =  torch.float32
  1447. requires gradient = False
  1448. mean = 0.003, min = -0.120, max = 0.529, median = -0.007, std=0.044
  1449. I_features_i
  1450. shape, torch.Size([1, 512, 16, 16])
  1451. number of elements =  131072
  1452. data type =  torch.float32
  1453. requires gradient = True
  1454. mean = -0.001, min = -0.147, max = 0.631, median = -0.009, std=0.044
  1455. T_features_i
  1456. shape, torch.Size([256, 512, 1, 1])
  1457. number of elements =  131072
  1458. data type =  torch.float32
  1459. requires gradient = False
  1460. mean = -0.001, min = -0.144, max = 0.629, median = -0.009, std=0.044
  1461. I_features_i
  1462. shape, torch.Size([1, 512, 16, 16])
  1463. number of elements =  131072
  1464. data type =  torch.float32
  1465. requires gradient = True
  1466. mean = 0.005, min = -0.103, max = 0.563, median = -0.006, std=0.044
  1467. T_features_i
  1468. shape, torch.Size([256, 512, 1, 1])
  1469. number of elements =  131072
  1470. data type =  torch.float32
  1471. requires gradient = False
  1472. mean = 0.005, min = -0.114, max = 0.595, median = -0.006, std=0.044
  1473. I_features_i
  1474. shape, torch.Size([1, 512, 16, 16])
  1475. number of elements =  131072
  1476. data type =  torch.float32
  1477. requires gradient = True
  1478. mean = -0.004, min = -0.177, max = 0.512, median = -0.009, std=0.044
  1479. T_features_i
  1480. shape, torch.Size([256, 512, 1, 1])
  1481. number of elements =  131072
  1482. data type =  torch.float32
  1483. requires gradient = False
  1484. mean = -0.004, min = -0.177, max = 0.556, median = -0.009, std=0.044
  1485. I_features_i
  1486. shape, torch.Size([1, 512, 16, 16])
  1487. number of elements =  131072
  1488. data type =  torch.float32
  1489. requires gradient = True
  1490. mean = -0.000, min = -0.124, max = 0.584, median = -0.008, std=0.044
  1491. T_features_i
  1492. shape, torch.Size([256, 512, 1, 1])
  1493. number of elements =  131072
  1494. data type =  torch.float32
  1495. requires gradient = False
  1496. mean = -0.000, min = -0.126, max = 0.568, median = -0.008, std=0.044
  1497. I_features_i
  1498. shape, torch.Size([1, 512, 16, 16])
  1499. number of elements =  131072
  1500. data type =  torch.float32
  1501. requires gradient = True
  1502. mean = -0.005, min = -0.168, max = 0.595, median = -0.011, std=0.044
  1503. T_features_i
  1504. shape, torch.Size([256, 512, 1, 1])
  1505. number of elements =  131072
  1506. data type =  torch.float32
  1507. requires gradient = False
  1508. mean = -0.006, min = -0.177, max = 0.532, median = -0.011, std=0.044
  1509. I_features_i
  1510. shape, torch.Size([1, 512, 16, 16])
  1511. number of elements =  131072
  1512. data type =  torch.float32
  1513. requires gradient = True
  1514. mean = -0.007, min = -0.181, max = 0.507, median = -0.009, std=0.044
  1515. T_features_i
  1516. shape, torch.Size([256, 512, 1, 1])
  1517. number of elements =  131072
  1518. data type =  torch.float32
  1519. requires gradient = False
  1520. mean = -0.007, min = -0.181, max = 0.543, median = -0.009, std=0.044
  1521. I_features_i
  1522. shape, torch.Size([1, 512, 16, 16])
  1523. number of elements =  131072
  1524. data type =  torch.float32
  1525. requires gradient = True
  1526. mean = 0.003, min = -0.117, max = 0.627, median = -0.007, std=0.044
  1527. T_features_i
  1528. shape, torch.Size([256, 512, 1, 1])
  1529. number of elements =  131072
  1530. data type =  torch.float32
  1531. requires gradient = False
  1532. mean = 0.003, min = -0.122, max = 0.625, median = -0.007, std=0.044
  1533. I_features_i
  1534. shape, torch.Size([1, 512, 16, 16])
  1535. number of elements =  131072
  1536. data type =  torch.float32
  1537. requires gradient = True
  1538. mean = -0.003, min = -0.161, max = 0.485, median = -0.009, std=0.044
  1539. T_features_i
  1540. shape, torch.Size([256, 512, 1, 1])
  1541. number of elements =  131072
  1542. data type =  torch.float32
  1543. requires gradient = False
  1544. mean = -0.003, min = -0.167, max = 0.492, median = -0.009, std=0.044
  1545. AMP Scaler state dict:  {'scale': 4096.0, 'growth_factor': 2.0, 'backoff_factor': 0.5, 'growth_interval': 2000, '_growth_tracker': 0}
  1546. 20-08-28 10:08:58.264 - INFO: <epoch:  0, iter:       4, lr:1.000e-04> contextual: 2.1699e+00
  1547. I_features_i
  1548. shape, torch.Size([1, 256, 32, 32])
  1549. number of elements =  262144
  1550. data type =  torch.float32
  1551. requires gradient = True
  1552. mean = -0.007, min = -0.159, max = 0.655, median = -0.021, std=0.062
  1553. T_features_i
  1554. shape, torch.Size([1024, 256, 1, 1])
  1555. number of elements =  262144
  1556. data type =  torch.float32
  1557. requires gradient = False
  1558. mean = -0.007, min = -0.153, max = 0.701, median = -0.021, std=0.062
  1559. I_features_i
  1560. shape, torch.Size([1, 256, 32, 32])
  1561. number of elements =  262144
  1562. data type =  torch.float32
  1563. requires gradient = True
  1564. mean = -0.030, min = -0.171, max = 0.597, median = -0.033, std=0.055
  1565. T_features_i
  1566. shape, torch.Size([1024, 256, 1, 1])
  1567. number of elements =  262144
  1568. data type =  torch.float32
  1569. requires gradient = False
  1570. mean = -0.030, min = -0.171, max = 0.597, median = -0.033, std=0.055
  1571. I_features_i
  1572. shape, torch.Size([1, 256, 32, 32])
  1573. number of elements =  262144
  1574. data type =  torch.float32
  1575. requires gradient = True
  1576. mean = 0.003, min = -0.178, max = 0.675, median = -0.012, std=0.062
  1577. T_features_i
  1578. shape, torch.Size([1024, 256, 1, 1])
  1579. number of elements =  262144
  1580. data type =  torch.float32
  1581. requires gradient = False
  1582. mean = 0.003, min = -0.178, max = 0.661, median = -0.012, std=0.062
  1583. I_features_i
  1584. shape, torch.Size([1, 256, 32, 32])
  1585. number of elements =  262144
  1586. data type =  torch.float32
  1587. requires gradient = True
  1588. mean = 0.001, min = -0.185, max = 0.647, median = -0.016, std=0.062
  1589. T_features_i
  1590. shape, torch.Size([1024, 256, 1, 1])
  1591. number of elements =  262144
  1592. data type =  torch.float32
  1593. requires gradient = False
  1594. mean = 0.002, min = -0.180, max = 0.610, median = -0.015, std=0.062
  1595. I_features_i
  1596. shape, torch.Size([1, 256, 32, 32])
  1597. number of elements =  262144
  1598. data type =  torch.float32
  1599. requires gradient = True
  1600. mean = -0.000, min = -0.148, max = 0.606, median = -0.016, std=0.062
  1601. T_features_i
  1602. shape, torch.Size([1024, 256, 1, 1])
  1603. number of elements =  262144
  1604. data type =  torch.float32
  1605. requires gradient = False
  1606. mean = -0.000, min = -0.152, max = 0.618, median = -0.016, std=0.062
  1607. I_features_i
  1608. shape, torch.Size([1, 256, 32, 32])
  1609. number of elements =  262144
  1610. data type =  torch.float32
  1611. requires gradient = True
  1612. mean = -0.001, min = -0.178, max = 0.647, median = -0.015, std=0.062
  1613. T_features_i
  1614. shape, torch.Size([1024, 256, 1, 1])
  1615. number of elements =  262144
  1616. data type =  torch.float32
  1617. requires gradient = False
  1618. mean = -0.000, min = -0.177, max = 0.658, median = -0.015, std=0.063
  1619. I_features_i
  1620. shape, torch.Size([1, 256, 32, 32])
  1621. number of elements =  262144
  1622. data type =  torch.float32
  1623. requires gradient = True
  1624. mean = -0.004, min = -0.180, max = 0.584, median = -0.018, std=0.062
  1625. T_features_i
  1626. shape, torch.Size([1024, 256, 1, 1])
  1627. number of elements =  262144
  1628. data type =  torch.float32
  1629. requires gradient = False
  1630. mean = -0.005, min = -0.177, max = 0.589, median = -0.018, std=0.062
  1631. I_features_i
  1632. shape, torch.Size([1, 256, 32, 32])
  1633. number of elements =  262144
  1634. data type =  torch.float32
  1635. requires gradient = True
  1636. mean = -0.014, min = -0.185, max = 0.593, median = -0.025, std=0.061
  1637. T_features_i
  1638. shape, torch.Size([1024, 256, 1, 1])
  1639. number of elements =  262144
  1640. data type =  torch.float32
  1641. requires gradient = False
  1642. mean = -0.014, min = -0.185, max = 0.599, median = -0.025, std=0.061
  1643. I_features_i
  1644. shape, torch.Size([1, 256, 32, 32])
  1645. number of elements =  262144
  1646. data type =  torch.float32
  1647. requires gradient = True
  1648. mean = -0.001, min = -0.152, max = 0.616, median = -0.017, std=0.062
  1649. T_features_i
  1650. shape, torch.Size([1024, 256, 1, 1])
  1651. number of elements =  262144
  1652. data type =  torch.float32
  1653. requires gradient = False
  1654. mean = -0.000, min = -0.147, max = 0.644, median = -0.017, std=0.063
  1655. I_features_i
  1656. shape, torch.Size([1, 256, 32, 32])
  1657. number of elements =  262144
  1658. data type =  torch.float32
  1659. requires gradient = True
  1660. mean = -0.022, min = -0.190, max = 0.725, median = -0.027, std=0.059
  1661. T_features_i
  1662. shape, torch.Size([1024, 256, 1, 1])
  1663. number of elements =  262144
  1664. data type =  torch.float32
  1665. requires gradient = False
  1666. mean = -0.022, min = -0.191, max = 0.722, median = -0.028, std=0.058
  1667. I_features_i
  1668. shape, torch.Size([1, 256, 32, 32])
  1669. number of elements =  262144
  1670. data type =  torch.float32
  1671. requires gradient = True
  1672. mean = -0.009, min = -0.151, max = 0.616, median = -0.022, std=0.062
  1673. T_features_i
  1674. shape, torch.Size([1024, 256, 1, 1])
  1675. number of elements =  262144
  1676. data type =  torch.float32
  1677. requires gradient = False
  1678. mean = -0.008, min = -0.152, max = 0.597, median = -0.022, std=0.062
  1679. I_features_i
  1680. shape, torch.Size([1, 256, 32, 32])
  1681. number of elements =  262144
  1682. data type =  torch.float32
  1683. requires gradient = True
  1684. mean = -0.030, min = -0.171, max = 0.597, median = -0.033, std=0.055
  1685. T_features_i
  1686. shape, torch.Size([1024, 256, 1, 1])
  1687. number of elements =  262144
  1688. data type =  torch.float32
  1689. requires gradient = False
  1690. mean = -0.030, min = -0.171, max = 0.597, median = -0.033, std=0.055
  1691. I_features_i
  1692. shape, torch.Size([1, 256, 32, 32])
  1693. number of elements =  262144
  1694. data type =  torch.float32
  1695. requires gradient = True
  1696. mean = 0.007, min = -0.174, max = 0.603, median = -0.012, std=0.062
  1697. T_features_i
  1698. shape, torch.Size([1024, 256, 1, 1])
  1699. number of elements =  262144
  1700. data type =  torch.float32
  1701. requires gradient = False
  1702. mean = 0.007, min = -0.173, max = 0.586, median = -0.012, std=0.062
  1703. I_features_i
  1704. shape, torch.Size([1, 256, 32, 32])
  1705. number of elements =  262144
  1706. data type =  torch.float32
  1707. requires gradient = True
  1708. mean = -0.005, min = -0.185, max = 0.634, median = -0.020, std=0.062
  1709. T_features_i
  1710. shape, torch.Size([1024, 256, 1, 1])
  1711. number of elements =  262144
  1712. data type =  torch.float32
  1713. requires gradient = False
  1714. mean = -0.005, min = -0.182, max = 0.635, median = -0.020, std=0.062
  1715. I_features_i
  1716. shape, torch.Size([1, 256, 32, 32])
  1717. number of elements =  262144
  1718. data type =  torch.float32
  1719. requires gradient = True
  1720. mean = 0.005, min = -0.171, max = 0.597, median = -0.011, std=0.062
  1721. T_features_i
  1722. shape, torch.Size([1024, 256, 1, 1])
  1723. number of elements =  262144
  1724. data type =  torch.float32
  1725. requires gradient = False
  1726. mean = 0.005, min = -0.171, max = 0.612, median = -0.011, std=0.062
  1727. I_features_i
  1728. shape, torch.Size([1, 256, 32, 32])
  1729. number of elements =  262144
  1730. data type =  torch.float32
  1731. requires gradient = True
  1732. mean = 0.004, min = -0.138, max = 0.713, median = -0.014, std=0.062
  1733. T_features_i
  1734. shape, torch.Size([1024, 256, 1, 1])
  1735. number of elements =  262144
  1736. data type =  torch.float32
  1737. requires gradient = False
  1738. mean = 0.005, min = -0.132, max = 0.702, median = -0.013, std=0.062
  1739. I_features_i
  1740. shape, torch.Size([1, 512, 16, 16])
  1741. number of elements =  131072
  1742. data type =  torch.float32
  1743. requires gradient = True
  1744. mean = -0.004, min = -0.152, max = 0.708, median = -0.011, std=0.044
  1745. T_features_i
  1746. shape, torch.Size([256, 512, 1, 1])
  1747. number of elements =  131072
  1748. data type =  torch.float32
  1749. requires gradient = False
  1750. mean = -0.004, min = -0.155, max = 0.687, median = -0.011, std=0.044
  1751. I_features_i
  1752. shape, torch.Size([1, 512, 16, 16])
  1753. number of elements =  131072
  1754. data type =  torch.float32
  1755. requires gradient = True
  1756. mean = -0.019, min = -0.199, max = 0.399, median = -0.020, std=0.040
  1757. T_features_i
  1758. shape, torch.Size([256, 512, 1, 1])
  1759. number of elements =  131072
  1760. data type =  torch.float32
  1761. requires gradient = False
  1762. mean = -0.019, min = -0.199, max = 0.399, median = -0.020, std=0.040
  1763. I_features_i
  1764. shape, torch.Size([1, 512, 16, 16])
  1765. number of elements =  131072
  1766. data type =  torch.float32
  1767. requires gradient = True
  1768. mean = 0.002, min = -0.171, max = 0.549, median = -0.007, std=0.044
  1769. T_features_i
  1770. shape, torch.Size([256, 512, 1, 1])
  1771. number of elements =  131072
  1772. data type =  torch.float32
  1773. requires gradient = False
  1774. mean = 0.002, min = -0.170, max = 0.533, median = -0.007, std=0.044
  1775. I_features_i
  1776. shape, torch.Size([1, 512, 16, 16])
  1777. number of elements =  131072
  1778. data type =  torch.float32
  1779. requires gradient = True
  1780. mean = 0.001, min = -0.144, max = 0.510, median = -0.008, std=0.044
  1781. T_features_i
  1782. shape, torch.Size([256, 512, 1, 1])
  1783. number of elements =  131072
  1784. data type =  torch.float32
  1785. requires gradient = False
  1786. mean = 0.001, min = -0.147, max = 0.504, median = -0.008, std=0.044
  1787. I_features_i
  1788. shape, torch.Size([1, 512, 16, 16])
  1789. number of elements =  131072
  1790. data type =  torch.float32
  1791. requires gradient = True
  1792. mean = -0.000, min = -0.143, max = 0.713, median = -0.008, std=0.044
  1793. T_features_i
  1794. shape, torch.Size([256, 512, 1, 1])
  1795. number of elements =  131072
  1796. data type =  torch.float32
  1797. requires gradient = False
  1798. mean = -0.000, min = -0.144, max = 0.728, median = -0.009, std=0.044
  1799. I_features_i
  1800. shape, torch.Size([1, 512, 16, 16])
  1801. number of elements =  131072
  1802. data type =  torch.float32
  1803. requires gradient = True
  1804. mean = 0.002, min = -0.142, max = 0.559, median = -0.008, std=0.044
  1805. T_features_i
  1806. shape, torch.Size([256, 512, 1, 1])
  1807. number of elements =  131072
  1808. data type =  torch.float32
  1809. requires gradient = False
  1810. mean = 0.002, min = -0.136, max = 0.573, median = -0.007, std=0.044
  1811. I_features_i
  1812. shape, torch.Size([1, 512, 16, 16])
  1813. number of elements =  131072
  1814. data type =  torch.float32
  1815. requires gradient = True
  1816. mean = -0.000, min = -0.158, max = 0.554, median = -0.009, std=0.044
  1817. T_features_i
  1818. shape, torch.Size([256, 512, 1, 1])
  1819. number of elements =  131072
  1820. data type =  torch.float32
  1821. requires gradient = False
  1822. mean = -0.001, min = -0.156, max = 0.509, median = -0.009, std=0.044
  1823. I_features_i
  1824. shape, torch.Size([1, 512, 16, 16])
  1825. number of elements =  131072
  1826. data type =  torch.float32
  1827. requires gradient = True
  1828. mean = -0.009, min = -0.184, max = 0.462, median = -0.014, std=0.043
  1829. T_features_i
  1830. shape, torch.Size([256, 512, 1, 1])
  1831. number of elements =  131072
  1832. data type =  torch.float32
  1833. requires gradient = False
  1834. mean = -0.009, min = -0.182, max = 0.483, median = -0.014, std=0.043
  1835. I_features_i
  1836. shape, torch.Size([1, 512, 16, 16])
  1837. number of elements =  131072
  1838. data type =  torch.float32
  1839. requires gradient = True
  1840. mean = 0.000, min = -0.127, max = 0.690, median = -0.009, std=0.044
  1841. T_features_i
  1842. shape, torch.Size([256, 512, 1, 1])
  1843. number of elements =  131072
  1844. data type =  torch.float32
  1845. requires gradient = False
  1846. mean = 0.000, min = -0.118, max = 0.665, median = -0.009, std=0.044
  1847. I_features_i
  1848. shape, torch.Size([1, 512, 16, 16])
  1849. number of elements =  131072
  1850. data type =  torch.float32
  1851. requires gradient = True
  1852. mean = -0.007, min = -0.154, max = 0.525, median = -0.011, std=0.044
  1853. T_features_i
  1854. shape, torch.Size([256, 512, 1, 1])
  1855. number of elements =  131072
  1856. data type =  torch.float32
  1857. requires gradient = False
  1858. mean = -0.008, min = -0.158, max = 0.531, median = -0.012, std=0.044
  1859. I_features_i
  1860. shape, torch.Size([1, 512, 16, 16])
  1861. number of elements =  131072
  1862. data type =  torch.float32
  1863. requires gradient = True
  1864. mean = -0.003, min = -0.125, max = 0.689, median = -0.010, std=0.044
  1865. T_features_i
  1866. shape, torch.Size([256, 512, 1, 1])
  1867. number of elements =  131072
  1868. data type =  torch.float32
  1869. requires gradient = False
  1870. mean = -0.002, min = -0.121, max = 0.726, median = -0.010, std=0.044
  1871. I_features_i
  1872. shape, torch.Size([1, 512, 16, 16])
  1873. number of elements =  131072
  1874. data type =  torch.float32
  1875. requires gradient = True
  1876. mean = -0.019, min = -0.199, max = 0.398, median = -0.020, std=0.040
  1877. T_features_i
  1878. shape, torch.Size([256, 512, 1, 1])
  1879. number of elements =  131072
  1880. data type =  torch.float32
  1881. requires gradient = False
  1882. mean = -0.019, min = -0.199, max = 0.399, median = -0.020, std=0.040
  1883. I_features_i
  1884. shape, torch.Size([1, 512, 16, 16])
  1885. number of elements =  131072
  1886. data type =  torch.float32
  1887. requires gradient = True
  1888. mean = 0.002, min = -0.120, max = 0.567, median = -0.008, std=0.044
  1889. T_features_i
  1890. shape, torch.Size([256, 512, 1, 1])
  1891. number of elements =  131072
  1892. data type =  torch.float32
  1893. requires gradient = False
  1894. mean = 0.002, min = -0.128, max = 0.608, median = -0.008, std=0.044
  1895. I_features_i
  1896. shape, torch.Size([1, 512, 16, 16])
  1897. number of elements =  131072
  1898. data type =  torch.float32
  1899. requires gradient = True
  1900. mean = -0.001, min = -0.158, max = 0.505, median = -0.010, std=0.044
  1901. T_features_i
  1902. shape, torch.Size([256, 512, 1, 1])
  1903. number of elements =  131072
  1904. data type =  torch.float32
  1905. requires gradient = False
  1906. mean = -0.001, min = -0.155, max = 0.564, median = -0.010, std=0.044
  1907. I_features_i
  1908. shape, torch.Size([1, 512, 16, 16])
  1909. number of elements =  131072
  1910. data type =  torch.float32
  1911. requires gradient = True
  1912. mean = 0.003, min = -0.133, max = 0.650, median = -0.007, std=0.044
  1913. T_features_i
  1914. shape, torch.Size([256, 512, 1, 1])
  1915. number of elements =  131072
  1916. data type =  torch.float32
  1917. requires gradient = False
  1918. mean = 0.003, min = -0.133, max = 0.660, median = -0.007, std=0.044
  1919. I_features_i
  1920. shape, torch.Size([1, 512, 16, 16])
  1921. number of elements =  131072
  1922. data type =  torch.float32
  1923. requires gradient = True
  1924. mean = 0.003, min = -0.136, max = 0.507, median = -0.007, std=0.044
  1925. T_features_i
  1926. shape, torch.Size([256, 512, 1, 1])
  1927. number of elements =  131072
  1928. data type =  torch.float32
  1929. requires gradient = False
  1930. mean = 0.004, min = -0.118, max = 0.540, median = -0.007, std=0.044
  1931. AMP Scaler state dict:  {'scale': 2048.0, 'growth_factor': 2.0, 'backoff_factor': 0.5, 'growth_interval': 2000, '_growth_tracker': 0}
  1932. 20-08-28 10:09:01.267 - INFO: Training interrupted. Latest models and training states saved.
RAW Paste Data Copied