Advertisement
frentzy

fere

Nov 10th, 2018
404
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 37.96 KB | None | 0 0
  1.     % version 2013
  2.     \documentclass[11pt]{amsart}
  3.     %\usepackage{graphicx, color}
  4.     \usepackage{amscd}
  5.     \usepackage{amsmath,empheq}
  6.     \usepackage{amsfonts}
  7.     \usepackage{amssymb}
  8.     \usepackage{mathrsfs}
  9.  
  10.     \usepackage[all]{xy}
  11.  
  12.  
  13.     \textwidth=6in \textheight=9.5in \topmargin=-0.5cm
  14.     \oddsidemargin=0.5cm \evensidemargin=0.5cm
  15.     %\usepackage[notref,notcite]{showkeys}
  16.  
  17.     \newtheorem{theorem}{Theorem}
  18.     \newtheorem{ex}{Example}
  19.     \newtheorem{lemma}[theorem]{Lemma}
  20.     \newtheorem{prop}[theorem]{Proposition}
  21.     \newtheorem{remark}{Remark}
  22.     \newtheorem{corollary}[theorem]{Corollary}
  23.     \newtheorem{claim}{Claim}
  24.     \newtheorem{step}{Step}
  25.     \newtheorem{case}{Case}
  26.     \newtheorem{definition}[theorem]{Definition}
  27.  
  28.     %\newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
  29.     \newenvironment{proof-sketch}{\noindent{\bf Sketch of Proof}\hspace*{1em}}{\qed\bigskip}
  30.  
  31.     \newcommand{\eqname}[1]{\tag*{#1}}% Name of equation
  32.  
  33.     \everymath{\displaystyle}
  34.  
  35.     %\numberwithin{equation}{section}
  36.     \newcommand{\RR}{\mathbb R}
  37.     \newcommand{\NN}{\mathbb N}
  38.     \newcommand{\PP}{\mathbb P}
  39.     \newcommand{\ZZ}{\mathbb Z}
  40.     \renewcommand{\le}{\leqslant}
  41.     \renewcommand{\leq}{\leqslant}
  42.     \renewcommand{\ge}{\geqslant}
  43.     \renewcommand{\geq}{\geqslant}
  44.     \newcommand{\raisedrule}[2][0em]{\leaders\hbox{\rule[#1]{1pt}{#2}}\hfill}
  45.  
  46.     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  47.     \baselineskip=16pt plus 1pt minus 1pt
  48.  
  49.     \begin{document}
  50.     %\hfill\today\bigskip
  51.  
  52.     \title[Perturbations of nonlinear eigenvalue problems]{Perturbations of nonlinear eigenvalue problems}
  53.  
  54.  
  55.     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  56.     \author[N.S. Papageorgiou]{Nikolaos S. Papageorgiou}
  57.     \address{National Technical University, Department of Mathematics,
  58.                     Zografou Campus, Athens 15780, Greece}
  59.     \email{\tt npapg@@math.ntua.gr}
  60.  
  61.     \author[V. R\u{a}dulescu]{Vicen\c{t}iu D. R\u{a}dulescu}
  62.     \address{University of Craiova, Department of Mathematics, Street A.I.Cuza 13,
  63.             200585 Craiova, Romania \\
  64.             and Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764,
  65.                         014700 Bucharest, Romania}
  66.     \email{\tt vicentiu.radulescu@imar.ro}
  67.  
  68.     \author[Dusan Repovs]{Dusan Repovs}
  69.     \address{Faculty of Education and Faculty of Mathematics and Physics, University of Ljublijiana, Karadeljeva Ploscad 16, SI-1000 Ljubljana, SLOVENIA}
  70.     \email{\tt dusan.repovs@guest.arnes.si}
  71.  
  72.     \keywords{Nonhomogeneous differential operator, sublinear and superlinear perturbation nonlinear regularity, nonlinear maximum principle, comparison principle minimal positive solution\\
  73.     \phantom{aa} 2010 AMS Subject Classification: 35J20, 35J60}
  74.  
  75.  
  76.     \begin{abstract}
  77.     abstractt
  78.     \end{abstract}
  79.  
  80.     \maketitle
  81.  
  82.     \begin{equation}
  83.     0 \leq \lambda f(z,\bar{u}(z)) \leq 1 \mbox{ for a.a } z\in \Omega, \mbox{ all } 0 < \lambda \leq \lambda_0.
  84.     \label{17}
  85.     \end{equation}
  86.  
  87.     We consider the following truncation of the reaction in problem $(p_\Lambda)$
  88.  
  89.  
  90.     \begin{equation}
  91.     \partial_\lambda(z,x) = \left\{
  92.      \begin{array}{lr}
  93.                     v(z)^{-\gamma} + \lambda f(z,v(z)) \hspace{5.5mm} \mbox{ if } x < v(z) \\
  94.                     x^{-\gamma} + \lambda f(z,x) \hspace{15mm}\mbox{ if } v(z) \leq x \leq \bar{u}(z) \\
  95.                     \bar{u}(z)^{-\gamma} + \lambda f(z,\bar{u}(z)) \hspace{5.2mm} \mbox{ if } \bar{u}(z) < x.
  96.      \end{array}
  97.     \right.
  98.     \label{18}
  99.     \end{equation}
  100.  
  101.     This is a Caratheodory function. We set $\theta_\lambda(z,x) = \int_{0}^x \partial_\lambda (z,s) ds$ and consider the functional $\mu\lambda : W^{1,p}(\Omega) \to R\,\, (\lambda \in (0,\lambda_0])$ defined by
  102.     $$\mu_\lambda(u) = \frac{1}{p} \gamma_p (u) + \frac{1}{q} ||D u||_q^q - \int_{\Omega} \theta_\lambda(z,u)dz \mbox{ for all }u\in W^{1,p}(\Omega)$$
  103.     Since $0\leq\bar{u}^{-\gamma} \leq v^{-\gamma} \in L^{\infty}(\Omega)$, we see that $\mu_\lambda \in C'(W^{1,p}(\Omega))$. Also, it is clear from ~\eqref{18} and ~\eqref{1}, that $\mu_\lambda(\cdot)$ is coercive. In addition, it is sequentially weakly lower semicontinuous. So, we can find $u_\lambda \in W^{1,p}(\Omega)$ such that
  104.      $$\mu_\lambda(u_\lambda) = inf \Big[ \mu_\lambda(u): u\in W^{1,p}(\Omega) \Big],$$
  105.      $$\Rightarrow \mu_\lambda^{'} (u_\lambda) = 0,$$
  106.      $$\Rightarrow \langle A_p(u_\lambda),h\rangle + \langle A_q(u_\lambda),h \rangle + \int_{\Omega}\xi(z) u_\lambda^{' p-2} u_\lambda hdz + \int_{\partial\Omega} \beta(z) |u_\lambda|^{p-2} u_\lambda hdo$$
  107.     \begin{equation}
  108.     = \int_{\Omega} \partial_\lambda (z,u_\lambda) hdz \mbox{ for all } h\in W^{1,p}(\Omega).
  109.     \label{19}
  110.     \end{equation}
  111.     In ~\eqref{19} first we choose $h=(u_\lambda -\bar{u})^+ \in W^{1,p}(\Omega)$.Then
  112.     $$\mbox{ In \eqref{19} first we choose } h = (u_\lambda -\bar{u})^+ \in W^{1,p}(\Omega). \mbox{ Then } $$
  113.     $$ \langle A_n(u_\lambda),(u_\lambda - \bar{u})^+\rangle + \langle A_q(u_\lambda),(u_\lambda-\bar{u})^+\rangle + \int_{\Omega}\xi (z) u_\lambda^{p+} (u_\lambda -\bar{u})^{+} dz +  \int_{\partial\Omega} \beta(z) u_\lambda^{p-1} (u_\lambda - \bar{u}) do  $$
  114.     $$ =\int_{\Omega} [\bar{u}^{-\gamma} + \lambda f(z,\bar{u})](u_\lambda -\bar{u})^+ dz \mbox{ (see ~\eqref{18})) } $$
  115.     $$ \leq \int_{\Omega} [\bar{u}^{-\gamma} +1](u_\lambda -\bar{u})^+ dz \mbox{ (see ~\eqref{17}) } $$
  116.     $$ \leq \int_{\Omega} [v^{-\gamma} + 1](u_\lambda -\bar{u})^+ dz \mbox{ (since } v\leq\bar{u}) $$
  117.     $$ = \langle A_p(\bar{u},(u_\lambda -\bar{u}))^+ \langle + \langle A_q(\bar{u}),(u_\lambda-\bar{u})^+ \rangle + \int_{\Omega} \xi (z) \bar{u}^{p-1} (u_\lambda -\bar{u})^+ dz$$
  118.     $$ + \int_{\partial\Omega} \beta(z) \bar{u}^{p-1} (u_\lambda -\bar{u})^+ do \mbox{ (see Proposition 9),} $$
  119.     $$ \Rightarrow u_\lambda \leq \bar{u}. $$
  120.     Next in ~\eqref{19} we choose $h=(v-u_\lambda)^+ \in W^{1,p}(\Omega).$ Then
  121.  
  122.     %pag 21 , este () sau || la u
  123.     $$ \langle A_p(u_\lambda),(v-u_\lambda)^+\rangle + \langle A_q(u_\lambda),(v-u_\lambda)^+ \rangle + \int_{\Omega} \xi (z) |u_\lambda|^{p-2} u_\lambda (v-u_\lambda)^+ dz + \int_{\partial\Omega} \beta(z) |u_\lambda|^{p-2} u_\lambda(v-u_\lambda)^+ do $$
  124.     $$ =\int_{\Omega} [v^{-\gamma} + \lambda f(z,v) ] (v-u_\lambda)^+ dz \mbox{ (see ~\eqref{18})} $$
  125.     $$ \geq \int_{\Omega} v^{-\gamma} (v-u_\lambda)^+ dz \mbox{ (since } f\geq 0) $$
  126.     $$ =\,\,\langle A_p(v),(v-u_\lambda)^+\rangle + \langle A_q(v),(v-u_\lambda)^+\rangle + \int_{\lambda} \xi (z) v^{p-1} (v-u_\lambda)^+ dz $$
  127.     $$+ \int_{\partial\Omega}\beta (z) v^{p-1} (v-u_\lambda)^+ do \mbox{ (see Proposition 8),}$$
  128.     $$ \Rightarrow v \leq u_\lambda. $$
  129.     So, we have proved that
  130.     \begin{equation}
  131.     u_\lambda \in [v,\bar{u}].
  132.     \label{20}
  133.     \end{equation}
  134.     From ~\eqref{18},~\eqref{19},~\eqref{20} it follows that
  135.     \begin{equation}
  136.     \left\{
  137.      \begin{array}{lr}
  138.                 -\Delta_p u_\lambda(z) -\Delta_q u_\lambda(z) + \xi(z) u_\lambda (z)^{p-1} = u_\lambda (z)^{-\gamma} + \lambda f (z,u_\lambda(z)) \mbox{ for a.a } z\in \Omega, \\
  139.                     \frac{\partial u_\lambda}{\partial n_{pq}} + \beta(z) u_\lambda^{p-1} = 0 \mbox{ on } \partial\Omega,
  140.      \end{array}
  141.     \right\}
  142.     \label{21}
  143.     \end{equation}
  144.     $$ \mbox{ (see [7])}. $$
  145.     From ~\eqref{21} and Proposition 7 of Papageorgiou-Radulescu [8], we have that $u_\lambda\in L^{\infty}(\Omega).$ So, the nonlinear regularity theory of Lieberman [6] implies that $u_\lambda \in D_+$ (see ~\eqref{20}). Therefore we have proved that
  146.     $$ (0,\lambda_0] \leq L \neq \varnothing \mbox{ and } S_\lambda \subseteq D_+.$$
  147.     \begin{flushright}
  148.     \underline{\underline{QED}}
  149.     \end{flushright}
  150.     Next we establish a lower bound for the elements of $S_\lambda$
  151.     \underline{Proposition 11}: \underline{If} hypotheses $H(\xi),H(\beta),H_0,H(f)$ hold, $\lambda\in L$ and $u\in S_\lambda$, \underline{then} $v\leq u$.
  152.     %small sau smau sau sman
  153.  
  154.     \underline{Proof}: From Proposition 10 we know that $u\in D_+$. Then Proposition 7 implies that for $\eta >0$ small we have $\tilde{u}_\eta \leq u.$ So, we can define the following Caratheodory function
  155.  
  156.     \begin{equation}
  157.     e(z,x) = \left\{
  158.      \begin{array}{lr}
  159.                 \tilde{u}_\eta (z)^{-\gamma} \hspace{3.3mm} \mbox{ if } x<\tilde{u}_\eta (z)\\
  160.                 x^{-\gamma} \hspace{10mm}\mbox{ if } \tilde{u}_\eta(z) \leq x \leq u(z) \\
  161.                 u(z)^{-\gamma} \hspace{5mm}\mbox { if } u(z) <x
  162.      \end{array}
  163.     \right.
  164.     \label{22}
  165.     \end{equation}
  166.  
  167.     We set $E(z,x)= \int_{0}^x e(z,s) ds$ and consider the functional $d:W^{1,p}(\Omega) \to R$ defined by
  168.  
  169.     $$ d(u) = \frac{1}{p} \gamma_p(u) + \frac{1}{q} ||D u||_q^q - \int_\lambda E(z,u) dz \mbox{ for all } u\in W^{1,p}(\Omega). $$
  170.     As before we have $d\in C'(W^{1,p}(\Omega))$. Also, $d(\cdot)$ is coercive (see ~\eqref{22}) and weakly lower semicontinuous. Hence we can find $\hat{v} \in W^{1,p}(\Omega) $ such that
  171.     $$ d(\hat{u})= inf [d(u): u\in W^{1,p}(\Omega)], $$
  172.     $$ \Rightarrow d'(\hat{v}) = 0,$$
  173.     \begin{equation}
  174.     \begin{aligned}
  175.     \Rightarrow \langle A_p(\hat{v}),h\rangle + \langle A_q(\hat{v}),h\rangle + \int_{\Omega} \xi (z) |\hat{v}|^{p-2} \hat{v} hdz \\
  176.     + \int_{\partial\Omega} \beta(z) |\hat{v}|^{p-2} \hat{v} hdo = \int_{\Omega} e(z,\hat{v}) hdz \mbox { for all } h\in W_{1,p}(\Omega).
  177.     \end{aligned}
  178.     \label{23}
  179.     \end{equation}
  180.     In ~\eqref{23} first we choose $h=(\hat{v}-u)^+ \in W^{1,p}(\Omega).$ Exploiting the fact that $u\in S_\lambda$ and recalling that $f\geq 0$, we obtain $\hat{v} \leq u$. Next in ~\eqref{23} we test with $h=(\tilde{u}_\eta -v)^+\in W^{1,p}(\Omega)$
  181.     Using ~\eqref{22},~\eqref{9} and Proposition 7, we otain $\tilde{u}_\eta \leq \hat{v}$. Therefore
  182.     \begin{equation}
  183.     \hat{v} \in [\tilde{u}_\eta,u].
  184.     \label{24}
  185.     \end{equation}
  186.     From ~\eqref{22},~\eqref{23},~\eqref{24} and Proposition 8, we conclude that
  187.     $$ \hat{v} = v, $$
  188.     $$ \Rightarrow v \leq u \mbox{ for all } u\in S_\lambda. $$
  189.     \begin{flushright}
  190.     \underline{\underline{QED}}
  191.     \end{flushright}
  192.     Now we can have a structural property of $L$
  193.     \underline{Proposition 12}: \underline{If} hypotheses $H(\xi),H(\beta),H_0,H(f)$ hold, $\lambda \in L$, $0<\mu < \lambda$ and $u_\lambda \in S_\lambda \subseteq D_+,$ \underline{then} $\mu \in L$ and we can find $u_\mu \in S_\mu \subseteq D_+$ such that $u_\lambda -u_\mu \in \mbox{ int }C_+$.
  194.     \underline{Proof}: From Proposition 11 we know that $v \leq u_\lambda.$ Then we can define the following Caratheodory function
  195.     \begin{equation}
  196.     \hat{k}_\mu(z,x) = \left\{
  197.      \begin{array}{lr}
  198.                 x(z)^{-\gamma} + \mu f(z,v(z)) \hspace{9.8mm} \mbox{ if } x< v(z)\\
  199.                 x^{-\gamma} + \mu f (z,x) \hspace{19.5mm} \mbox{ if } v(z) \leq x \leq u_\lambda (z) \\
  200.                 u_\lambda(z)^{-\gamma} + \mu f(z,u_\lambda(z)) \hspace{6mm} \mbox{ if } u_\lambda(z) < x.
  201.      \end{array}
  202.     \right.
  203.     \label{25}
  204.     \end{equation}
  205.     We set $\hat{k}_\mu(z,x) = \int_{0}^{x} \hat{k}_\mu (z,s) ds$ and consider the C'-functional $\hat{\psi}_\mu:W^{1,p}(\Omega) \to R$ defined by
  206.     $$ \hat{\psi}_\mu (u) = \frac{1}{p} \gamma_p(u) + \frac{1}{q} || D u ||_q^q - \int_{\Omega} \hat{k}_\mu (z,u) dz \mbox{ for all } u \in W^{1,p}(\Omega). $$
  207.     Evidently $\hat{\psi}_\mu(\cdot)$ is coercive (see ~\eqref{25}) and sequentially weakly lower semicontinuous. So, we can find $u_\mu \in W^{1,p}(\Omega)$ such that
  208.     $$ \hat{\psi}_\mu(u_\mu) = \mbox{ inf } \Big[ \hat{\psi}_\mu(u): u\in W^{1,p}(\Omega) \Big] ,$$
  209.     $$ \Rightarrow \hat{\psi}_\mu (u_\mu) = 0, $$
  210.     $$ \Rightarrow \langle A_p(u_\mu),h> + <A_q(u_\mu),h\rangle + \int_{\Omega} \xi(z) |u_\mu|^{p-2} u_\mu hdz + \int_{\partial\Omega} B(z) |u_\mu|^{p-2} u_\mu hdo $$
  211.     \begin{equation}
  212.     = \int_{\Omega} \hat{k}_\mu (z,u\mu) hdz \mbox{ for all } n \in W^{1,p}(\Omega).
  213.     \label{26}
  214.     \end{equation}
  215.     In ~\eqref{26} first we choose $h = (u\mu - u_\lambda)^+ \in W^{1,p}(\Omega).$ Using ~\eqref{25}, the fact that $\mu < \lambda$ and that $f \geq 0$ and recalling that $u_\lambda \in S_\lambda$, we conclude that $u_\mu \leq u_\lambda$. Next in ~\eqref{26} we choose $h=(v-u\mu)^+ \in W^{1,p}(\Omega).$ From ~\eqref{25}, the fact that $f \geq 0$ and Proposition 8, we infer that $v \leq u_\mu$. Therefore we have proved that
  216.     \begin{equation}
  217.     u_\mu \in [v,u_\lambda]
  218.     \label{27}
  219.     \end{equation}
  220.     From ~\eqref{25},~\eqref{26},~\eqref{27} it follows that
  221.     $$ u_\mu \in S_\mu \subseteq D_+ \mbox{ (see Proposition 10).}$$
  222.     Let $p= ||u_\lambda||_{\infty} $ and let $\hat{\xi}_{p}^\lambda > 0$ be as postulated by hypothesis $H(f)(\underline{v})$. We have
  223.     \begin{equation}
  224.     \begin{aligned}
  225.     &-\Delta_p u_\lambda (z) - \Delta_q u_\mu (z) + \Big[\xi(z) + \hat{\xi}_p^{\lambda}\Big] u_\mu(z)^{p-1} - u_\mu(z)^{-\gamma}\\
  226.     &= \mu f(z,u_\mu(z)) + \hat{\xi}_p^{\lambda} u_\mu(z)^{p-1}\\
  227.     &=\lambda f(z,u_\mu(z)) + \hat{\xi}_p^{\lambda} u_\mu (z)^{p-1} - (\lambda - \mu) f(z,u_\mu (z)) \\
  228.     &< \lambda f (z,u_\mu(z)) + \hat{\xi}_p^{\lambda} u_\lambda (z)^{p-1} \mbox{ (recall } \lambda > \mu ) \\
  229.     &\leq \lambda f (z,u_\mu(z)) + \hat{\xi}_p^{\lambda} u_\mu(z)^{p-1} \mbox{ (see ~\eqref{27} and hypothesis } H(f)(v)) \\
  230.     &= -\Delta_p u_\lambda (z) - \Delta_q u_\lambda (z) + \Big[ \xi(z) + \hat{\xi}_p^{\lambda} \Big] u_\lambda(z)^{p-1} - u_\lambda(z)^{-\lambda} \mbox{ for a.a } z \in \lambda \\
  231.     &\mbox{ (recall }u_\lambda \in S_\lambda)
  232.     \end{aligned}
  233.     \label{28}
  234.     \end{equation}
  235.     We know that
  236.     $$ 0 \leq u_\lambda^{-\gamma},u_\lambda^{-\gamma} \leq v^{-\gamma} \in L^{\infty}(\Omega) $$
  237.     Also, from hypothesis $H(f)(\underline{iv})$ and since $u_\mu \in D_+,$ we have
  238.     $$ 0 < c_8 \leq (\lambda - \mu)f(z,u_\mu(z)) \mbox{ for a.a } z\in \Omega $$
  239.     Invoking Proposition 4, from ~\eqref{28} we conclude that
  240.     $$ u_\lambda - u_\mu \in \mbox{int} C_+. $$
  241.     \begin{flushright}
  242.     \underline{\underline{QED}}
  243.     \end{flushright}
  244.     \underline{Proposition 13}: \underline{If} hypotheses $H(E),H(\beta),H_0,H(f)$ hold, \underline{then} $\lambda^* < + \infty$
  245.     \underline{Proof}: On account of hypotheses $H(f)(\underline{i}) \to (\underline{iv})$, we can find $\lambda_0 >0$ big such that
  246.     \begin{equation}
  247.     x^{-\gamma} + \lambda_0 f(z,x) \geq x^{p-1} \mbox{ for a.a } z\in \Omega , \mbox{ all } x \geq 0.
  248.     \label{29}
  249.     \end{equation}
  250.     Let $\lambda > \lambda_0$ and suppose that $\lambda + L$. Then we can find $u_\lambda \in S_\lambda \subseteq D_+$ (see Proposition 10). Then $m_\lambda = \min_{\bar{\Omega}} u_\lambda >0$. For $\delta\in (0,1)$ we set $m_\lambda^{\delta} = m_\lambda + \delta$ and for $p = ||u_\lambda||_{\infty}$ let $\hat{\xi}_p^{\lambda} > 0$ be as postulated by hypothesis $H(f)(\underline{v})$. We have
  251.  
  252.     \begin{equation}
  253.     \begin{aligned}
  254.     & -\Delta_p m_\lambda^\delta - \Delta_q m_\lambda^{\delta} + [\xi(z) + \hat{\xi}_p](m_\lambda^{\delta})^{p-1} - (m_\lambda^{\delta})^{-\gamma} \\
  255.     & =[\xi(z) + \hat{\xi}_p^{\lambda}]m_{\lambda}^{p-1} - m_\lambda^{-\gamma} + \chi(\delta) \mbox{ with } \chi(\delta) \to 0^{+} \mbox{ as } \delta \to 0^+ \\
  256.     & < \xi(z) m_\lambda^{p-1} + (1+ \hat{\xi}_p^{\lambda}) m_\lambda^{p-1} - m_\lambda^{-\gamma} + \chi(\delta)\\
  257.     & \leq \lambda_0 f(z,m_\lambda) + [\xi(z) + \hat{\xi}_p^{\lambda}] m_\lambda^{p-1} + \chi(\delta) \mbox{ (see ~\eqref{29})} \\
  258.     & \leq \lambda_0 f(z,u_\lambda) + [\xi(z) + \hat{\xi}_p^{\lambda}] u_\lambda^{p-1} + \chi(\delta) \mbox { (see hypothesis } H(f)(\underline{v})) \\
  259.     % small sau smau iara ????
  260.     & = \lambda f(z,u_\lambda) + [\xi(z) + \hat{\xi}_p^{\lambda}] u_\lambda^{p-1} -(\lambda -\lambda_0) f(z,u_\lambda) + \chi(\delta)\\
  261.     & = \lambda f(z,u_\lambda) + [\xi(z) + \hat{\xi}_p^{\lambda}] u_\lambda^{p-1} \mbox { for } \delta \in (0,1) \mbox { small } \\
  262.     &\quad \mbox{ (recall } u_\lambda \in D_+ \mbox{ and see } H(f)(\underline{iv})) \\
  263.     & = -\Delta_p u_\lambda - \Delta_q u_\lambda + [\xi(z) + \hat{\xi}_p^{\lambda}] u_\lambda^{p-1} - u_\lambda^{-\gamma}
  264.     \end{aligned}
  265.     \label{30}
  266.     \end{equation}
  267.     %? iara pagina 26 wtf small ? sau ce
  268.     Since $(\lambda - \lambda_0)f(z,u_\lambda) - \chi(\delta) \geq c_9 > 0$ for a.a $z \in \Omega$ and for $d\in(0,1)$ small (just recall that $u_\lambda \in D_+$ and use hypothesis H(f)(\underline{iv}), invoking Proposition 4, from ~\eqref{30} we infer that
  269.  
  270.     $$ u_\lambda - m_\lambda^{\delta} \in \mbox{ int } C_+ \mbox{ for all }\delta \in (0,1) \mbox{ small}.$$
  271.     But this contradicts the definition of $m_\lambda$.
  272.     It follows that $\lambda \notin L$ and so $\lambda^* \leq \lambda_0 < +\infty$
  273.     \begin{flushright}
  274.     \underline{\underline{QED}}
  275.     \end{flushright}
  276.     Therefore we have
  277.     $$ (0,\lambda^*) \leq L \leq (0,\lambda*] $$
  278.     \underline{Proposition 14}: \underline{If} hypotheses $H(\xi),H(\beta),H_0,H(f)$ hold and $\lambda \in (0,\lambda^*)$,
  279.     \underline{then} problem $(p_\lambda)$ has at least two positive solutions
  280.     $$ u_0, \hat{u} \in D_+, u_0 \neq \hat{u}. $$
  281.     \underline{Proof}: Let $0<\mu<\lambda<\eta <\lambda^*$. According to Proposition 12, we can find $u_\eta \in S_\eta \subseteq D_+, u_0\in S_\lambda \subseteq D_+$ and $u_\mu \in S_\mu \subseteq D_+ $ such that
  282.     \begin{equation}
  283.     \begin{aligned}
  284.     & u_\eta - u_0 \in \mbox { int } C_+  \mbox{ and } u_0 -u_\mu \in \mbox{ int } C_+,\\
  285.     & \Rightarrow u_0 \in \mbox{ int }_{C' (\hat{\Omega})} [u_\mu,u_\eta].
  286.     \end{aligned}
  287.     \label{31}
  288.     \end{equation}
  289.     We introduce the following Caratheodory function
  290.     \begin{equation}
  291.     \tilde{T}_\lambda (z,x) = \left\{
  292.      \begin{array}{lr}
  293.                 u_\mu(z)^{-\gamma} + \lambda f (z,u_\mu(z)) \hspace{5.9mm} \mbox{ if } x < u_\mu(z) \\
  294.                 x^{-\gamma} + \lambda f (z,x) \hspace{20mm} \mbox{ if } u_\mu(z) \leq x \leq u_\eta(z) \\
  295.                 u_\eta(z)^{-\gamma} + \lambda f (z,u_\eta(z)) \hspace{6.7mm} \mbox{ if } u_\eta(z) <x.
  296.      \end{array}
  297.     \right.
  298.     \label{32}
  299.     \end{equation}
  300.     Set $\tilde{T}_\lambda(z,x) = \int_{0}^{x} \tilde{T}_\lambda (z,s)ds$ and consider the C'-functional $\tilde{\psi}_\lambda: W^{1,p}(\Omega) \to R$ defined by
  301.     $$ \tilde{\psi}_\lambda(u) = \frac{1}{p}\gamma_p(u) + \frac{1}{q} ||D u||_q^q - \int_{\lambda}\tilde{T}_\lambda (z,u)dz \mbox{ for all } u\in W^{1,p}(\Omega) $$
  302.     Using ~\eqref{32} and the nonlinear regularity theory, we can easily check that
  303.     \begin{equation}
  304.     K_{\tilde{\psi}_\lambda} \leq [u_\mu,u_\eta] \cap D_+.
  305.     \label{33}
  306.     \end{equation}
  307.     Also, consider the Caratheodory function
  308.     \begin{equation}
  309.     \tau_\lambda^* (z,x) =  \left\{
  310.      \begin{array}{lr}
  311.                 u_\mu(z)^{-\gamma} + \lambda f (z,u_\mu(z)) \hspace{5.9mm} \mbox{ if } x \leq u_\mu (z)\\
  312.                 x^{-\gamma} + \lambda f(z,x) \hspace{20mm} \mbox{ if } u_\mu (z) < x.
  313.      \end{array}
  314.     \right.
  315.     \label{34}
  316.     \end{equation}
  317.     We set $T_\lambda^* (z,x) = \int_{0}^{x} \tau_\lambda^* (z,s)ds$ and consider the C'-functional $\psi_\lambda^*: W^{1,p}(\Omega) \to R $ defined by
  318.     $$ \psi_\lambda^*(u) = \frac{1}{p} \gamma_p(u) + \frac{1}{q}||D u||_q^q - \int_{\Omega} T_\lambda^* (z,u) dz \mbox{ for all } u\in W^{1,p}(\Omega). $$
  319.     For this functional using ~\eqref{34}, we show that
  320.     \begin{equation}
  321.     K_{\psi_\lambda^*} \leq [u_\mu) \cap D_+.
  322.     \label{35}
  323.     \end{equation}
  324.     From ~\eqref{32} and ~\eqref{34} we see that
  325.     \begin{equation}
  326.     \tilde{\psi}_\lambda \Big|_{[u_\mu,u_\eta]} = \psi_\lambda^{*} \Big|_{[u_\mu,u_\eta]} \,\,\mbox{ and }\,\, \tilde{\psi}_\lambda^{'}\Big|_{[u_\mu,u_\eta]} = (\psi_\lambda^*)' \Big|_{[u_\mu,u_\lambda]}.
  327.     \label{36}
  328.     \end{equation}
  329.     From ~\eqref{33},~\eqref{35},~\eqref{36}, it follows that without any loss of generality, we may assume that
  330.     \begin{equation}
  331.     K_{\psi_\lambda^*} \cap [u_\mu,u_\eta] = \{u_0\}.
  332.     \label{37}
  333.     \end{equation}
  334.     Otherwise it is clear from ~\eqref{34} and ~\eqref{35} that we already have a second positive smooth solution for problem $(p_\lambda)$ and so we are done.
  335.     Note that $\tilde{\psi_\lambda}(\cdot)$ is coercive (see ~\eqref{32}). Also, it is sequentially weakly lower semicontinuous. So, we can find $\hat{u}_0 \in W^{1,p}(\Omega)$ such that
  336.     \begin{equation}
  337.     \begin{aligned}
  338.     &\tilde{\psi}_\lambda (\hat{u}_0) = \mbox{ inf } \Big[ \tilde{\psi}_\lambda (u): u\in W^{1,p}(\Omega)\Big],\\
  339.     &\Rightarrow \hat{u}_0 \in K_{\tilde{\psi}_\lambda}, \\
  340.     &\Rightarrow \hat{u}_0 \in K_{\psi_\lambda^*} \cap [u_\mu,u_\eta] \mbox{ (see ~\eqref{33},~\eqref{36}) }, \\
  341.     &\Rightarrow \hat{u}_0 = u_0 \in D_+ \mbox{ (see ~\eqref{37}}), \\
  342.     &\Rightarrow u_0 \mbox{ is a local C'} (\bar{\Omega})\mbox{-minimizer of } \psi_\lambda^* \mbox{ (see ~\eqref{31})},\\
  343.     &\Rightarrow u_0 \mbox{ is a local } W^{1,p}(\Omega)\mbox{-minimizer of }\psi_\lambda^* \mbox{ (see proposition 5).}
  344.     \end{aligned}
  345.     \label{38}
  346.     \end{equation}
  347.     We assume that $K_{\psi_\lambda^*}$ is finite. Otherwise on account of ~\eqref{34} and ~\eqref{35} we see that we already have an infinity of positive smooth solutions for problem $(p_\lambda)$ and so we are done. Then ~\eqref{38} implies that we can find $\rho\in(0,1)$ small. such that
  348.     \begin{equation}
  349.     \begin{aligned}
  350.     &\psi_\lambda^*(u_0)< \mbox{ inf } \Big[ \psi_\lambda^*(u): ||u-u_0|| = \rho \Big] = m_\lambda^* \\
  351.     &\mbox{(see Papageorgiou-Radulescu-Repovs [12], Theorem 5.7.6,p.367).}
  352.     \end{aligned}
  353.     \label{39}
  354.     \end{equation}
  355.     On account of hypothesis $H(f)(\underline{ii})$ we have
  356.  
  357.     \begin{equation}
  358.     \psi_\lambda^* (t\hat{u}_1 (p)) \to -\infty \mbox{ as } t\to +\infty.
  359.     \label{40}
  360.     \end{equation}
  361.     \\
  362.     %% DE AICI am scris primele 10 pagini , si s-a verificat cam vreo 2-4 pagini , trebuie revizuit unde ma oprisem
  363.     \underline{Claim:} $\psi_\lambda^*(\cdot)$ satisfies the C - condition.
  364.     $$ \mbox{Let } \{ u_n \}_{n \geq 1} \,\,\leq \mbox{W}^{1,p}(\Omega) \mbox{ be a sequence such that}  $$
  365.     \begin{equation} |\psi_\lambda^* (u_n) |\leq c_{10} \mbox{ for some }  c_{10} > 0 , \mbox{ all } n \in N,
  366.     \label{41}
  367.     \end{equation}
  368.  
  369.     \begin{equation} (1 + ||u_n|| ) (\psi_\lambda^*)' (u_n) \to 0 \mbox{ in W }^{1,p}(\Omega)^*.
  370.     \label{42}
  371.     \end{equation}
  372.      
  373.     From ~\eqref{42} we have
  374.     % pe aici
  375.     \begin{equation}
  376.     \begin{aligned}
  377.     &| \langle A_p(u_n),h\rangle + \langle A_q(u_n),h\rangle + \int_{\Omega} \xi(z) |u_n|^{p-2}u_n h \, dz + \int_{\partial\Omega} \beta(z) |u_n|^{p-2} u_n h do\\
  378.     & - \int_{\Omega} \tau_\lambda^*(z, u_n) h \,dz ) \leq \frac{\epsilon_n ||h||}{1 + ||u_n||} \mbox{ for all } h \in W^{1,p}, \mbox{ with } \epsilon_n \rightarrow 0^+.  
  379.     \end{aligned}
  380.     \label{43}
  381.     \end{equation}
  382.      
  383.     Choosing  $h= -u_n^{-} \in W^{1,p}(\Omega)$, we obtain
  384.      % si aici
  385.     \begin{equation*}
  386.     \begin{split}
  387.      \gamma_p(u_n^{-}) + ||D u_n^{-} ||_q^q \leq c_{11} ||u_n^{-} || \mbox{ for some } c_{11} > 0 , \mbox{ all } n \in N \mbox{ (see ~\eqref{34})}
  388.     \end{split}
  389.     \end{equation*}
  390.  
  391.  
  392.  
  393.      
  394.     \begin{equation}
  395.     \begin{split}
  396.     \Rightarrow \{u_n^{-} \}_{n \geq 1} \subseteq W^{1,p}(\Omega) \mbox{ is bounded } \mbox{ (see ~\eqref{1} and recall }1<p)
  397.     \end{split}
  398.     \label{44}
  399.     \end{equation}
  400.      
  401.     Next in ~\eqref{43} we choose $ h = u_n^+ \in W^{1,p}(\Omega)$. Then
  402.      
  403.     %de la mbox unde trebuie pus
  404.     \begin{equation}   
  405.     \begin{aligned}
  406.     &-\gamma_p (u_n^{+} - || Du_n^+ ||_q^q + \int_{\Omega} \tau_\lambda^* (z,u_n) u_n^+ dz \leq \epsilon_n \mbox{ for all } n \in N,\\
  407.     &\Rightarrow -\gamma_p(u_n^+) - ||Du_n^+||_q^q + \int_{\{ u_n \leq u_{\mu} \}} [u_\mu^{-\gamma} + \lambda f(z,u_\mu)] u_n^{+}dz \\
  408.     &+ \int_{\{ u_\mu < u_n \}} [u_n^{-\gamma}+\lambda f(z,u_n)]u_n^+ dz  \, \leq \, \epsilon_n \mbox{ for all } n\in N \mbox{ (see ~\eqref{34})}
  409.     \end{aligned}
  410.     \label{45}
  411.     \end{equation}
  412.      
  413.     On the other hand from ~\eqref{41} and ~\eqref{44}, we have
  414.      
  415.     $$ \gamma_p(u_n^+) + \frac{p}{q} || D_u^+ ||_q^q - \int_{ \{u_n\leq u_\mu\}} p[u_\mu - \gamma + \lambda f(z,u_p) ] u_n^+ \, dz $$
  416.     \begin{equation*}
  417.     \begin{aligned}
  418.      &- \int_{\{u_\mu < u_n \}} \bigg[\frac{p}{1-\gamma} (u_n^{1-\gamma} - u_\mu^{1-\gamma}) + p(\lambda F (z,u_n) - \lambda F(z,u_\mu) \bigg] dz \leq \epsilon n \\
  419.     &\quad \mbox{for all } n \in N (see ~\eqref{34})
  420.     \end{aligned}
  421.     \end{equation*}
  422.     \begin{equation}
  423.     \begin{aligned}
  424.      &\Rightarrow \gamma_p(u_n^+) + \frac{p}{q} ||D u_n^+ ||_p^p - \int_{ \{ u_n \leq u_\mu \}} p [u_\mu^{-\gamma} + \lambda f(z,u_\mu)] u_n^+ dz \\
  425.     &- \int_{ \{ u_p < u_n \}} \bigg[ \frac{p}{1-\gamma} u_n^{1-\gamma} + \lambda p F(z,u_n)] dz \leq c_{12}
  426.      \mbox{ for some } c_{12} > 0, \mbox{ all } n \in N.
  427.     \end{aligned}
  428.     \label{46}
  429.     \end{equation}
  430.     We add ~\eqref{45} and ~\eqref{46}. Since $p > q$ , we obtain
  431.  
  432.     \begin{equation*}
  433.     \begin{aligned}
  434.      \lambda \int_{ \{ u_\mu < u_n \} } [f(z,u_n)u_n^+ - pF(z,u_n) ] dz \leq \,\, (p-1) \int_{ \{ u_n \leq u_\mu \}} [u_\mu^{-\gamma} + \lambda f(z,u_\mu] u_n^+ dz \\
  435.     +\bigg(\frac{p}{1-\gamma} - 1 \bigg) \int_{\{ u_\mu < u_n \}} u_n^{1-\gamma} dz
  436.     \end{aligned}
  437.     \end{equation*}
  438.     \begin{equation}
  439.     \begin{split}
  440.     \Rightarrow \lambda \int_{\Omega} [f(z,u_n^+)u_n^+ - p F (z,u_n^+)] dz \,\, \leq \,\, c_{13} \,\big[|| u_n^+ ||_{1} + 1\big] \mbox{ for some } c_{13}>0, \mbox{ all }  n \in N.
  441.     \end{split}
  442.     \label{47}
  443.     \end{equation}
  444.  
  445.     % such that?
  446.     On account of hypotheses $ H(f)(\underline{i}),(\underline{iii})$ we can find $\hat{\beta}_1 \in (0,\hat{\beta}_0) $ and $c_{14} > 0$ such that
  447.  
  448.     \begin{equation}
  449.     \hat{\beta}_1 x^\tau - c_{14} \leq f(z,x) - p F(z,x) \mbox{ for a.a } z \in \Omega, \mbox{ all } x \geq 0.
  450.     \label{48}
  451.     \end{equation}
  452.  
  453.     Using ~\eqref{48} in ~\eqref{47}, we obtain
  454.  
  455.     %pe aici
  456.     $$ ||u_n^+||_\tau^\tau \leq c_{15} \big[ ||u_n^+||_\tau + 1 \big] \mbox{ for some } c_{15} > 0, \mbox{ all } n\in N, $$
  457.     \begin{equation}
  458.     \Rightarrow \{u_n^+\}_{n \geq 1} \leq L^\tau (\Omega) \mbox{ is bounded}.
  459.     \label{49}
  460.     \end{equation}
  461.     First assume N $\neq $ p . From hypothesis $H(f) (\underline{iii})$ it is clear that we may assume without any loss of generality that $ \tau < r < p^*. $ Let $t\in(0,1)$ be such that
  462.     $$ \frac{1}{r} = \frac{1-t}{\tau} + \frac{t}{p*} $$
  463.     Then from the interpolation inequality (see Papageorgiou - Winkert[15], Proposition 2.3.17,p.116), we have
  464.     $$ || u_n^+ ||_r \leq || u_n^+ ||_\tau^{1-t} ||u_n^+||_{p^*}^{t}, $$
  465.     \begin{equation}
  466.     ||u_n^+||_r^r \leq c_{16} ||u_n^+||^{tr} \mbox{ for some } c_{16} > 0, \mbox{ all } n \in N \mbox{ (see ~\eqref{49})}.
  467.     \label{50}
  468.     \end{equation}
  469.     From hypothesis $H(f)(\underline{i})$ we have
  470.     % all sau a.a?
  471.     \begin{equation}
  472.     f(z,x) x \leq c_{17} [1+ x^r] \mbox{ for all }z \in \Omega , \mbox{ all } x \geq 0, \mbox{ some } c_{17} > 0.
  473.     \label{51}
  474.     \end{equation}
  475.  
  476.     From ~\eqref{43} with $h=u_n^+ \in W^{1,p} (\Omega)$, we obtain
  477.  
  478.     \begin{equation}
  479.     \begin{aligned}
  480.     & \gamma_p (u_n^+) + || D u_n^+ ||_q^q - \int_{\Omega} \tau_\lambda^* (z,u_n) u_n^+ dz \leq \epsilon_n \mbox{ for all   } n\in N,\\
  481.     &\Rightarrow \gamma_p (u_n^+) + || D u_n^+ ||_q^q \leq \int_{\Omega} [(u_n^+)^{1-\gamma} + f(z,u_n^+) u_n^+] dz + c_{18} \\
  482.     &\quad\quad\quad\quad\quad\quad\quad\quad\mbox{ for some } c_{18} > 0, \mbox{ all } n \in N \mbox{ (see ~\eqref{34}) } \\
  483.     &\leq c_{19} \big[ 1 + || u_n^+||_r^r \big] \mbox{ for some } c_{19} > 0 , \mbox{ all } n\in N \mbox{ (see ~\eqref{51})}\\
  484.     &\leq c_{20} [1 + ||u_n^+||^{tr}] \mbox{ for some } c_{20} > 0 , \mbox{ all } n\in N \mbox { (see ~\eqref{50})}
  485.     \end{aligned}
  486.     \label{52}
  487.     \end{equation}
  488.  
  489.     The hypothesis on $\tau$ (see $H(f)(\underline{iii})) $ implies that $tr < p.$ So, from ~\eqref{52} we infer that
  490.  
  491.     $$ \{ u_n^+ \}_{n \geq 1} \subseteq W^{1,p}(\Omega) \mbox{ is bounded}, $$
  492.     \begin{equation}
  493.     \Rightarrow \{ u_n \}_{n \geq 1} \subseteq W^{1,p}(\Omega)\mbox{ is bounded (see ~\eqref{44})}.
  494.     \label{53}
  495.     \end{equation}
  496.     \setlength{\parindent}{10ex}
  497.     If $N = p,$ then $p^* = + \infty $ and from the Sobolev embedding theorem, we know that $W^{1,p}(\Omega) \hookrightarrow L^s(\Omega)$ for all $1\leq s < \infty$. Then in order for the previous argument to work, we replace $p^* = + \infty$ by $s > r > \tau$ and let $t\in (0,1)$ as before such that
  498.     $$ \frac{1}{r} = \frac{1-t}{\tau} + \frac{t}{s}, $$
  499.     $$ \Rightarrow tr = \frac{s(r-\tau)}{s-\tau}. $$
  500.     Note that $ \frac{s(r-\tau)}{s-\tau} \rightarrow r -\tau $ as $s \to + \infty$. But $r-\tau <p$ (see hypothesis H(f)(iii)). We choose $s>r$ big so that $tr<p$. Then again we have ~\eqref{53}.
  501.     Because of ~\eqref{53} and by passing to a subsequence if neccesary,we may assume that
  502.     \begin{equation}
  503.     u_n \stackrel{w}{\rightarrow} u \mbox{ in } W^{1,p}(\Omega) \mbox{ and } u_n \rightarrow u \mbox{ in } L^r (\Omega) \mbox{ and in }L^p(\partial\Omega)
  504.     \label{54}
  505.     \end{equation}
  506.     In ~\eqref{43} we choose $h = u_n - u \in W^{1,p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use ~\eqref{54}.Then
  507.     $$ \lim_{n\to\infty} \big[\langle A_p (u_n),u_n -u\rangle + \langle A_q(u_n),u_n -u\rangle\big] = 0, $$
  508.     \begin{equation*}
  509.     \begin{aligned}
  510.      &\Rightarrow \limsup_{n\to\infty} \big[\langle A_p(u_n),u_n -u\rangle + \langle A_q(u),u_n-u\rangle\big] \leq 0 \\
  511.      &\mbox{( since } A_q(\cdot) \mbox{ is monotone}) \\
  512.      &\Rightarrow\limsup_{n\to\infty} \langle A_p(u_n),u_n -u\rangle \,\, \leq 0, \\
  513.      &\Rightarrow u_n \to u \mbox{ in } W^{1,p}(\Omega) \mbox{ (see Proposition 1).}
  514.     \end{aligned}
  515.     \end{equation*}
  516.     Therefore $\psi_\lambda^*(\cdot)$ satisfies the C-condition. This proves the Claim.
  517.     Then ~\eqref{39},~\eqref{40} and the Claim permit the use of the mountain pass theorem
  518.     So, we can find $\hat{u}\in W^{1,p}(\Omega)$ such that
  519.     $$ \hat{u} \in K_{\psi_\lambda^*} \leq [u_\mu) \cap D_+ \mbox{ (see ~\eqref{35}) } , m_\lambda^* \leq \psi_\lambda^* (\hat{u}) \mbox{ (see ~\eqref{39})  }$$
  520.     Therefore $ \hat{u} \in D_+ $ is a second positive solution of $P_\lambda$  $(\lambda \in (0,\lambda^*))$ distinct from $u_0 \in D_+$.
  521.     \begin{flushright}
  522.     \underline{\underline{QED}}
  523.     \end{flushright}
  524.     Next we examine what can be said in the critical parameter $\lambda^*$.\\
  525.     \underline{Proposition 15}: \underline{If} hypotheses $H(\xi),H(\beta),H_0,H(f)$ hold, \underline{then} $\lambda^* \in L$.
  526.     \underline{Proof}: Let $\{\lambda_n\}_{n \geq 1} \subseteq (0,\lambda^*) $ be such that $\lambda_n < \lambda^*.$ We can find $u_n\in S_{\lambda_n} \subseteq D_+$ for all $n \in N$.
  527.  
  528.     We consider the following Caratheodory function
  529.  
  530.     \begin{equation}
  531.     \mu_n(z,x) = \left\{
  532.      \begin{array}{lr}
  533.                     v(z)^{-\gamma} + \lambda_n f(z,v(z)) \hspace{5.5mm} \mbox{ if } x \leq v(z) \\
  534.                     x^{-\gamma} + \lambda_n f(z,x) \hspace{15mm}\mbox{ if } v(z) < x.
  535.      \end{array}
  536.     \right.
  537.     \label{55}
  538.     \end{equation}
  539.  
  540.     % pag 34
  541.     We set $M_n (z,x) = \int_{0}^x \mu_n (z,x) ds$ and consider the C'-functional $j_n : W^{1,p}(\Omega) \rightarrow R$ defined by
  542.  
  543.     $$ j_n(u) = \frac{1}{p} \gamma_p(u) + \frac{1}{q} || D u ||_p^p  - \int_{\Omega}M_n(z,u) dz \mbox{ for all } u\in W^{1,p}(\Omega)$$
  544.  
  545.     % bullet sau * ?
  546.     Also, we consider the following truncation of $\mu_n(z,*)$
  547.  
  548.     \begin{equation}
  549.     \mu_n(z,x) = \left\{
  550.      \begin{array}{lr}
  551.                     \mu_n(z,x) \hspace{15mm} \mbox{ if } x \leq u_{n + 1} (z) \\
  552.                     \mu_n(z,u_{n+1}(z)) \hspace{4.3mm} \mbox{ if } u_{n+1} (z) < x
  553.      \end{array}
  554.     \right.
  555.     \label{56}
  556.     \end{equation}
  557.     (recall that $v\leq u_{n+1}$ for all $n\in N$, se Proposition 11). This is a Caratheodory function. We set $\hat{M}_n(z,x) = \int_{0}^x \hat{\mu}(z,x) ds$ and consider the C'-functional $\hat{J}_n : W^{1,p}(\Omega) \rightarrow R$ defined by
  558.  
  559.     $$ \hat{J}_n (u) = \frac{1}{p} \gamma_p (u) + \frac{1}{q} || D u ||_q^q - \int_{\Omega} \hat{M}_n (z,u) dz \mbox{ for all } u \in W^{1,p}(\Omega). $$
  560.     From ~\eqref{55}, ~\eqref{56} and ~\eqref{1} , it is clear that $\hat{J}_n(\cdot)$ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find $\hat{u}_n \in W^{1,p}(\Omega) $ such that
  561.     \begin{equation}
  562.     \hat{J}_n(\hat{u}_n) = \mbox{inf}\bigg[ \hat{J}_n(u): u \in W^{1,p}(\Omega) \bigg].
  563.     \label{57}
  564.     \end{equation}
  565.     Then we have
  566.     \begin{equation}
  567.     \begin{split}
  568.     \hat{J}_n(\hat{u}_n) \leq \hat{J}_n(v) \\
  569.      &\quad \leq \frac{1}{p} \gamma_p(v) + \frac{1}{q} ||D v||_q^q - \frac{1}{1-\gamma} \int_{\Omega} v^{1-\gamma} dz \\
  570.      &\quad \mbox{ (see ~\eqref{55}, ~\eqref{56} and recall that } f \geq 0 ) \\
  571.      &\quad \leq \langle A_p(v),v\rangle + \langle A_q(v),v\rangle - \int_{\Omega} v^{1-\gamma} dz = 0 \\
  572.      &\quad \mbox{ (see Proposition 8)} .
  573.     \end{split}
  574.     \label{58}
  575.     \end{equation}
  576.     From ~\eqref{57} we have
  577.     \begin{equation}
  578.     \hat{u}_n \in K_{\hat{J}_n} \subseteq [v,u_{n+1}] \cap D_+ \mbox{ for all } n\in N \mbox{ (see ~\eqref{56})}
  579.     \label{59}
  580.     \end{equation}
  581.     Similarly using ~\eqref{55} we obtain
  582.     \begin{equation}
  583.     K_{j_n} \leq [v) \cap D_+
  584.     \label{60}
  585.     \end{equation}
  586.     Note that
  587.     $$ J_n \big|_{[v,u_{n+1}]} = \hat{J}_n \big|_{[v,u_{n+1}]} \mbox{ and } J'\big|_{[v,u_{n+1}]} = \hat{J}'\big|_{[v,u_{n+1}]} \mbox{ (see ~\eqref{55},~\eqref{56}}).$$
  588.  
  589.     Then from ~\eqref{58},~\eqref{59},~\eqref{60}, we have
  590.     \begin{equation}
  591.     J_n(\hat{u}_n) \leq 0 \mbox{ for all } n\in N \\
  592.     \label{61}
  593.     \end{equation}
  594.  
  595.     %\aici e xi sau altceva? pag 36 si acolo este hdz sau altceva gen sigma
  596.     \begin{equation}
  597.     \begin{aligned}
  598.     &\langle A_p(\hat{u}_n),h\rangle + \langle A_q(\hat{u}_n),h\rangle + \int_{\Omega} \xi(z)\hat{u}_n^{p-1} h dz + \int_{\partial\Omega} \beta(z)\hat{u}_n^{p-1} hd\sigma = \int_{\Omega} \mu_n(z,\hat{u}_n) h dz \\
  599.     &\quad \mbox{ for all } h \in W^{1,p}(\Omega), \mbox{ all } n\in N.
  600.     \end{aligned}
  601.     \label{62}
  602.     \end{equation}
  603.  
  604.     Using ~\eqref{61}, ~\eqref{62} and reasoning as in the Claim in the proof of Proposition 14, we show that
  605.  
  606.  
  607.     $$ \{\hat{u}_n\}_{n\geq 1} \subseteq W^{1,p}(\Omega) \mbox{ is bounded.} $$
  608.     So, we may assume that
  609.     \begin{equation}
  610.     \hat{u}_n \stackrel{w}{\rightarrow} \hat{u}_* \mbox{ in } W^{1,p}(\Omega) \mbox{ and } \hat{u}_n \rightarrow \hat{u}_* \mbox{ in } L^r(\Omega) \mbox{ and in } L^p(\partial\Omega).
  611.     \label{63}
  612.     \end{equation}
  613.     In ~\eqref{62} we choose $h=\hat{u}_n - \hat{u}_* \in W^{1,p}(\Omega), $ pass to the limit as $n\to\infty$ and use ~\eqref{63}. Then as before (see the proof of Proposition 14), we obtain
  614.     \begin{equation}
  615.     \hat{u}_n \rightarrow \hat{u}_* \mbox{ in } W^{1,p}(\Omega)
  616.     \label{64}
  617.     \end{equation}
  618.     In ~\eqref{62} we pass to the limit as $n\to\infty$ and use ~\eqref{64}. Then
  619.     $$ \langle A_p(\hat{u}_x),h\rangle + \langle A_q(\hat{u}_x),h\rangle + \int_{\Omega} \xi(z) \hat{u}_x^{p-1} hdz + \int_{\partial\Omega}\beta(z) \hat{u}_x^{p-1} hdz $$
  620.     $$ = \int_{\Omega}[\hat{u}_x^{-\gamma} + \lambda_x f(z,\hat{u}_x)] hdz \mbox{ for all } h \in W^{1,p}(\Omega) \mbox{ (see ~\eqref{55},~\eqref{60})}, $$
  621.     $$ \Rightarrow \hat{u}_x \in S_{\lambda^*} \subseteq D_+ \mbox{ and so } \lambda* \in L. $$
  622.            
  623.            
  624.     \begin{flushright}
  625.     \underline{\underline{QED}}
  626.     \end{flushright}
  627.  
  628.     From this proposition it follows that
  629.  
  630.     $$ L = (0,\lambda*]. $$
  631.  
  632.     The next bifurcation-type theorem summarizes our findings and provides a complete description of the dependence of the set of positive solutions of problem $(p_\lambda)$ on the parameter $\lambda >0.$
  633.  
  634.     %aici cu underline a ,b,c trebuie lasate asa sau arenjate ca acolo
  635.     \underline{Theorem 16}: \underline{If} hypotheses $H(\xi),H(\beta),H_0,H(f)$ hold, \underline{then} there exists $\lambda^* >0$ such that
  636.  
  637.     (\underline{a}) for all $\lambda \in (0,\lambda^*)$ problem $(p_\lambda)$ has at least two positive solutions
  638.  
  639.     $$ u_0, \hat{u} \in D_+ , u_0 \neq \hat{u};$$
  640.     (\underline{b}) for $\lambda = \lambda^*$ problem $(p_\lambda)$ has at least one positive solution $\hat{u}_*\in D_{+}$;
  641.     (\underline{c}) for all $\lambda > \lambda^*$ problem $ (p_\lambda)$ does not have any positive solutions
  642.  
  643.     \begin{thebibliography}{20}
  644.     \bibitem{1} \underline{L.Cherfils - Y.Ilyasov}:\textit{"On the stationary solutions of generalized reaction-diffusion equations with p\& q Laplacian"} Commun. Pure Appl. Anal. 4(2005), 9-22
  645.  
  646.     \bibitem{2} \underline{L.Gasinski-N.S.Papageorgiou}:\textit{"Nonlinear Analysis"} Chapman \& Hau/CRC,Baca Raton, Fl (2006)
  647.  
  648.     \bibitem{3} \underline{L.Gasinski-N.S.Papageorgiou}:\textit{"Exercises in Analysis. Part 2: Nonlinear Analysis"} Springer,Cham (2016)
  649.  
  650.     \bibitem{4} \underline{M.Ghergu-V.D.Radulescu}:\textit{"Singular Elliptic Problems.Bifurcation and Asymptotic Analysis"} Clarendon Press, Oxford (2008).
  651.  
  652.     \bibitem{5} \underline{J.Giacomoni - J.Schindler - P.takay}:\textit{"Sobolev versus H{\"o}lder local minimizers and existence of multiple solutions for a singular quasilinear equation"} Annah scu.Norm.Pisa, Ser V,6(2007), 117-158
  653.  
  654.     \bibitem{6} \underline{G.Lieberman}:\textit{"The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations"} Commun. Partial.Diff.Equ 16(1991), 311-361
  655.  
  656.     \bibitem{7} \underline{N.S.Papageorgiou-V.D.Radulescu}: \textit{"Multiple solutions with precise sign information for nonlinear parametre Robin problems"} J.Differential Equ 254(2014), 393-430.
  657.  
  658.     \bibitem{8} \underline{N.S.Papageorgiou-V.D.Radulescu}:\textit{"Nonlinear nonhomogeneous Robin problems with superlinear reaction"} Adv. Nonlin.Studies 16(2016), 737-764
  659.  
  660.     \bibitem{9} \underline{N.S.Papageorgiou-V.D.Radulescu}:\textit{"Positive solutions for nonlinear nonhomogeneous parametric Robin problems"} Forum Math.30(2018) 553-580
  661.  
  662.     \bibitem{10} \underline{N.S.Papageorgiou-V.D.Radulescu-D.Repovs}: \textit{"Positive solutions for nonlinear parametric singular Dirichlet problems"} Bull.Math.Sci.(2018), doi.org/10.1007/513373-018-0127-7
  663.  
  664.     \bibitem{11} \underline{N.S.Papageorgiou-V.D.Radulescu-D.Repovs}:\textit{"Pairs of positive solutions for resonant singular equations with the p-Laplacian"} Electr.J.Diff.tqu. 2017:249(2017), 1-13
  665.  
  666.     \bibitem{12} \underline{N.S.Papageorgiou-V.D.Radulescu-D.Repovs}:\textit{"Methods of Nonlinear Analysis and Boundary Value Problems"} Springer, Berlin (2019)
  667.  
  668.     \bibitem{13} \underline{N.S.Papageorgiou-G.smyrlis}:\textit{"A bifurcation-type theorem for singular nonlinear elliptic equations"} Meth.Appl.Anal. 22(2015), 147-170
  669.  
  670.     \bibitem{14} \underline{N.S.Papageorgiou-P.Winkert}:\textit{"Singular p-Laplacian equations with superlinear perturbation"} J.Differential equ,(2018),doi.org/10.1016/j.jde.2018.08.002
  671.  
  672.     %bag hline? ultima pagina
  673.     \bibitem{15} \underline{N.S.Papageorgiou-P.Winkert}:\textit{"Applied Nonlinear Functional Analysis"} de Gruyter,Berlin (2018)
  674.  
  675.     \bibitem{16} \underline{K.Perera-Z.Zhang:}:\textit{"Multiple positive solutions of singular p-Laplacian problems by variational methods"} Bound.Value Probl. 2005:3 (2005)
  676.  
  677.     \bibitem{17} \underline{P.Pucci-J.Serrin}:\textit{"The Maximum Principle"} Birkh{\"a}user,Basel (2007)
  678.  
  679.     \bibitem{18} \underline{V.V.Zhikov}:\textit{"Averaging of functionals of the calculus of variations and elasticity theory"} Math.USSR-Izvest. 29(1987), 33-66.
  680.  
  681.     \end{thebibliography}
  682.  
  683.  
  684.     \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement