Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #python color_tracking.py --video balls.mp4
- #python color_tracking.py
- # import the necessary packages
- from collections import deque
- import numpy as np
- import argparse
- import imutils
- import cv2
- import urllib #for reading image from URL
- # construct the argument parse and parse the arguments
- ap = argparse.ArgumentParser()
- ap.add_argument("-v", "--video",
- help="path to the (optional) video file")
- ap.add_argument("-b", "--buffer", type=int, default=64,
- help="max buffer size")
- args = vars(ap.parse_args())
- # define the lower and upper boundaries of the colors in the HSV color space
- lower = {'red':(166, 84, 141), 'green':(66, 122, 129), 'blue':(97, 100, 117), 'yellow':(23, 59, 119), 'orange':(0, 50, 80)} #assign new item lower['blue'] = (93, 10, 0)
- upper = {'red':(186,255,255), 'green':(86,255,255), 'blue':(117,255,255), 'yellow':(54,255,255), 'orange':(20,255,255)}
- # define standard colors for circle around the object
- colors = {'red':(0,0,255), 'green':(0,255,0), 'blue':(255,0,0), 'yellow':(0, 255, 217), 'orange':(0,140,255)}
- #pts = deque(maxlen=args["buffer"])
- # if a video path was not supplied, grab the reference
- # to the webcam
- if not args.get("video", False):
- camera = cv2.VideoCapture(0)
- # otherwise, grab a reference to the video file
- else:
- camera = cv2.VideoCapture(args["video"])
- # keep looping
- while True:
- # grab the current frame
- (grabbed, frame) = camera.read()
- # if we are viewing a video and we did not grab a frame,
- # then we have reached the end of the video
- if args.get("video") and not grabbed:
- break
- #IP webcam image stream
- #URL = 'http://10.254.254.102:8080/shot.jpg'
- #urllib.urlretrieve(URL, 'shot1.jpg')
- #frame = cv2.imread('shot1.jpg')
- # resize the frame, blur it, and convert it to the HSV
- # color space
- frame = imutils.resize(frame, width=600)
- blurred = cv2.GaussianBlur(frame, (11, 11), 0)
- hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
- #for each color in dictionary check object in frame
- for key, value in upper.items():
- # construct a mask for the color from dictionary`1, then perform
- # a series of dilations and erosions to remove any small
- # blobs left in the mask
- kernel = np.ones((9,9),np.uint8)
- mask = cv2.inRange(hsv, lower[key], upper[key])
- mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
- mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
- # find contours in the mask and initialize the current
- # (x, y) center of the ball
- cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)[-2]
- center = None
- # only proceed if at least one contour was found
- if len(cnts) > 0:
- # find the largest contour in the mask, then use
- # it to compute the minimum enclosing circle and
- # centroid
- c = max(cnts, key=cv2.contourArea)
- ((x, y), radius) = cv2.minEnclosingCircle(c)
- M = cv2.moments(c)
- center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
- # only proceed if the radius meets a minimum size. Correct this value for your obect's size
- if radius > 0.5:
- # draw the circle and centroid on the frame,
- # then update the list of tracked points
- cv2.circle(frame, (int(x), int(y)), int(radius), colors[key], 2)
- cv2.putText(frame,key + " ball", (int(x-radius),int(y-radius)), cv2.FONT_HERSHEY_SIMPLEX, 0.6,colors[key],2)
- # show the frame to our screen
- cv2.imshow("Frame", frame)
- key = cv2.waitKey(1) & 0xFF
- # if the 'q' key is pressed, stop the loop
- if key == ord("q"):
- break
- # cleanup the camera and close any open windows
- camera.release()
- cv2.destroyAllWindows()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement