Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (*Numerators of the partial sums of the Möbius inverse of the Harmonic numbers*)
- (*start*)
- Clear[T, n, k, a];
- nn = 7;
- a[n_] := If[n < 1, 0, Sum[d MoebiusMu@d, {d, Divisors[n]}]]
- TableForm[
- M = Table[
- Table[Sum[If[n >= k, a[GCD[n, k]], 0], {n, 1, m}], {k, 1, nn}], {m,
- 1, nn}]]
- (*end*)
- (*The partial sums of the Möbius inverse of the Harmonic numbers fit within this linear programming problem*)
- (*start*)
- nn = 42;
- TableForm[
- L1 = Table[
- LinearProgramming[
- Table[1/n, {n, 1, k}], {Table[If[n == 1, k, 1], {n, 1, k}]}, {{1,
- 0}}, Table[
- If[n == 1, {-1, 1}, {-2 (n - 1), 2 (n - 1)}], {n, 1, k}]], {k,
- 1, nn}]];
- b = Table[Sum[-Sign[-1 + Sign[L1[[n, k]]]], {k, 1, n}], {n, 1, nn}]
- (*end*)
- (*Setting the upper bound on the variables to zero gives us a square root bound, but then it is no longer an
- arithmetic sequence.*)
- (*start*)
- nn = 42;
- TableForm[
- L2 = Table[
- LinearProgramming[
- Table[1/n, {n, 1, k}], {Table[If[n == 1, k, 1], {n, 1, k}]}, {{1,
- 0}}, Table[
- If[n == 1, {-1, 1}, {-2 (n - 1), 0}], {n, 1, k}]], {k, 1, nn}]];
- c = Table[1 - Sum[Sign[L2[[n, k]]], {k, 1, n}], {n, 1, nn}]
- (*end*)
- (*Numerators of the partial sums of the Möbius inverse of the \
- Harmonic numbers*)
- (*start*)
- Clear[T, n, k, a, b];
- nn = 8;
- a[n_] := If[n < 1, 0, Sum[d MoebiusMu@d, {d, Divisors[n]}]]
- TableForm[
- Table[Table[If[n >= k, a[GCD[n, k]], 0], {k, 1, nn}], {n, 1, nn}]];
- TableForm[
- M = Table[
- Table[If[n >= k, StringJoin["a", ToString[n], ToString[k]],
- 0], {k, 1, nn}], {n, 1, nn}]];
- TableForm[
- Table[Table[
- Table[M[[m, k]], {m, n + k - 1, n + 2*(k - 1)}], {n, 1,
- nn - 2*(k - 1)}], {k, 1, nn}]];
- TableForm[
- Table[Table[
- Table[StringJoin[
- ToString[Sum[M[[m, k]], {m, n + k - 1, n + 2*(k - 1)}]],
- If[k == 1, "==1", StringJoin["==", ToString[0*2*(k - 1)]]]], {n,
- 1, nn - 2*(k - 1)}], {k, 1, nn}], {nn, 1, nn}]];
- TableForm[
- B = Table[
- Table[StringJoin[
- ToString[
- Sum[Sum[M[[m, k]], {m, n + k - 1, n + 2*(k - 1)}], {n, 1,
- nn - 2*(k - 1)}]],
- If[k == 1, "==1", StringJoin["<=", ToString[2*(k - 1)]]]], {k,
- 1, nn}], {nn, 1, nn}]];
- "Some of the constraints"
- TableForm[
- B1 = Table[
- Table[StringJoin[
- ToString[
- Sum[Sum[M[[m, k]], {m, n + k - 1, n + 2*(k - 1)}], {n, 1,
- nn - 2*(k - 1)}]], If[k == 1, "==1", "<="],
- ToString[2*(k - 1)]], {k, 1, nn}], {nn, 1, nn}]]
- TableForm[
- B1 = Table[
- Table[StringJoin[
- ToString[
- Sum[Sum[M[[m, k]], {m, n + k - 1, n + 2*(k - 1)}], {n, 1,
- nn - 2*(k - 1)}]], If[k == 1, "==1", "=>"],
- ToString[-2*(k - 1)]], {k, 1, nn}], {nn, 1, nn}]]
- TableForm[
- B1 = Table[
- Table[StringJoin[
- ToString[
- Sum[Sum[M[[m, k]], {m, n + k - 1, n + 2*(k - 1)}], {n, 1,
- nn - 2*(k - 1)}]]], {k, 1, nn}], {nn, 1, nn}]];
- TableForm[
- B2 = Table[
- StringJoin[
- ToString[Sum[StringJoin[ToString[B1[[n, k]]]], {k, 1, n}]],
- "==1"], {n, 1, nn}]]
- "Maximize this:"
- TableForm[
- B3 = Table[
- StringJoin[
- ToString[
- Sum[StringJoin["(", ToString[B1[[n, k]]], ")/", ToString[k]], {k,
- 1, n}]]], {n, 1, nn}]]
- (*end*)
- (*start*)
- "For larger epsilons we get non zero differences"
- epsilon = 1/100;
- Table[Floor[x^(1/2 + epsilon) + 1/2] - Floor[x^(1/2) + 1/2], {x, 0,
- 400}]
- "For smaller epsilons we get zero"
- epsilon = 1/100000000;
- Table[Floor[x^(1/2 + epsilon) + 1/2] - Floor[x^(1/2) + 1/2], {x, 0,
- 400}]
- (*end*)
Advertisement
Add Comment
Please, Sign In to add comment